Appendix 7-3

Avian Collision Risk Assessment

Avian Collision Risk Assessment

Carrownagowan Wind Farm, Co. Clare

ISSUE FORM	
Project number	19107
Document number	6020
Document revision	E
Document title	Avian Collision Risk Assessment, Carrownagowan Wind Farm, Co. Clare
Document status	FINAL
Document prepared by	ÚW [MWP - July 2020]
Document checked by	MK-MWP-28/07/2020; Tom Gittings, June 2020

Table of Contents

1	In	ntroc	duct	tion	1
	1.1	E	Back	، sground	1
	1.2	E	Band	d Modelling Method	1
2	Μ	1eth	odo	ology	1
	2.1	F	Fligh	nt Data	1
	2.2	E	Bird	Biometrics and Flight Duration at PCH	4
	2.3	E	Band	d Collision Risk Modelling	6
	2.	.3.1		Regular and Random Flight Models – Stage 1	6
	2.	.3.2		Probability of Collision – Stage 2	6
	2.	.3.3		Calculating Collision Risk	7
3	Re	esul	ts		8
	3.1	S	Stag	e 1 Calculations Results	8
	3.2	S	Stag	e 2 Calculations Results	13
	3.3	(Colli	ision Rates	14
	3.	.3.1		Collision Rates with Application of Specific Avoidance Rates	14
4	W	/ind	Far	m Mortality and Background Mortality	16
5	Сс	oncl	usio	on	16
6	Re	efer	ence	es	18

Table of Tables

Table 1: Details and calculations of flight paths not entirely located within a viewshed2
Table 2: Viewshed and vantage point details2
Table 3: Bird biometrics and bird-seconds spent by species at Potential Collision Height (25-175m)
Table 4: Monthly values of bird-seconds spent at PCH (25-175m)5
Table 5: Turbine technical parameters7
Table 6: Seasonal divisions of species (British Trust for Ornithology (BTO) (2020), and Wilson et al. (2015))8
Table 7: Predicted transits per turbine within the viewsheds of VP's 1a, 2, 3 and 4a for the 2016/17 and
2017/18 breeding seasons and the 2016/17 and 2017/18 winter seasons
Table 8: Predicted transits per turbine within the viewsheds of VP's 5a, 7a, 8a and 9 for the 2016/17 and
2017/18 breeding seasons and the 2016/17 and 2017/18 winter seasons
Table 9: Mean number of predicted transits per turbine per season, and mean number of predicted transits
across the entire wind farm site per season12
Table 10: Probability of collision – Stage 2 calculation outputs
Table 11: Predicted collision per season assuming no avoidance measures taken by bird.
Table 12: Number of collisions predicted with the application of avoidance rates specified by SNH (2018)15
Table 13: Mean number of collisions predicted using avoidance rates specified by SNH (2018). 15
Table 14: Calculations of potential increases in annual mortality 16

Table of Figures

Figure 1: Viewshed maps for VP1a, VP2 and VP3.	.3
Figure 2: Viewshed maps for VP4a, VP5a and VP7a.	.3
Figure 3: Viewshed maps for VP8a and VP9.	.4

List of Appendices

Appendix 1: Collision Risk Model Calculations

1 INTRODUCTION

1.1 BACKGROUND

Collision with the turbine rotors of onshore wind farms is a potential source of avian mortality. This document has been prepared to assess that risk by using a Collision Risk Model (CRM) for specific target bird species at the proposed Carrownagowan Wind Farm site in east County Clare.

In line with Scottish Natural Heritage (SNH, 2000) guidance, the Band Collision Risk Model (Band *et al.*, 2007) was used in this assessment. The model estimates the risk of collision based on the activity levels and flight behaviour of target species, the number, layout and specifications of the proposed turbines, and the biometrics of relevant species. The data for this assessment was obtained from vantage point (VP) surveys carried out on site at the Carrownagowan wind farm site from August 2016 to September 2018 at eight fixed vantage point locations.

1.2 BAND MODELLING METHOD

The Band modelling method involves two stages:

- Stage 1: Establishing the number of birds or flights that pass through the air space swept by the turbine rotors. These transits are determined by using either the "Regular or Random flight" model depending on flight activity and behaviour.
- Stage 2: Calculating the probability of a bird being struck when making a transit through a rotor.

The figures obtained in both stages are then multiplied together to give a theoretical annual collision mortality rate based on the supposition that birds make no attempt to avoid collision. However in "real-life" circumstances, birds demonstrate high rates of avoidance - usually 98-99% according to SNH (2018). To account for these evasion measures, known avoidance rates are applied as a percentage to the theoretical collision value as a final step.

Band Model values are solely speculative and representative of worst-case estimates, only drawing conclusions by assuming likely levels of active avoidance by specific species. Accordingly, results obtained are dependent on the quality of field observation data and accuracy of the avoidance rates used, and must therefore be interpreted with a certain degree of caution.

2 METHODOLOGY

2.1 FLIGHT DATA

Flight data was recorded at eight vantage point (VP) locations from September 2016 to the end of August 2018 (inclusive) by MKOS and the data was provided to MWP to undertake the model. A potential collision risk height (PCH) of between 25m and 175m above ground was established based on the Carrownagowan Wind Farm turbines having a maximum blade tip height of 169m, and a rotor diameter of 136m (see **Table 5**). This ensured that the PCH was easily within the rotor sweep of the turbine but also, as it larger than the actual turbine diameter, slightly overestimates the risk of collision.

VP watches were carried out at each VP location for 6 hours per month over a 2 year period between October 2016 and September 2018 based on recent SNH guidance (2017). The VP Arc for each VP is a 180° arc with a radius of 2km from the vantage point location, which represents the theoretical maximum coverage. The viewshed represents the actual area visible to the surveyor at a specified height above ground level from the vantage point location within each VP Arc. GIS computer software was used to generate the viewsheds for each VP. Flight data from the viewshed mapping for each VP was used to inform the CRM. During the bird survey in July 2017, the direction of view of the surveyor from a number of the VP locations was altered very slightly, namely VP1a, 2, 7a and 8a while the direction of view from VP9 was altered from the northwest to the north.

Flighpaths that were wholly outside of the viewshed were excluded from the CRM. Several flight paths were not located both inside and outside of their corresponding viewsheds. In some such cases, it was possible to exclude the flight paths outside of the viewshed by calculating the length of the section of flight path located within the viewshed and then find the proportion of the total duration of the flight this section represents. Six hen harrier (*Circus cyaneus*) flights as well as one flight each for buzzard (*Buteo buteo*) and kestrel (*Falco tinnunculus*) were suitable for such analysis. These flights are listed in **Table 1** below.

Species	Date	VP	No. of birds observed	Total length of flight (m)	Total duration of flight (secs)	Length of flight within viewshed (m)	Duration of flight within viewshed (secs)
Hen Harrier	16/09/16	7a	1	1891	180	508	48
Hen Harrier	21/04/17	9	1	2907	30	181	2
Hen Harrier	20/04/18	5a	1	990	30	921	28
Hen Harrier	11/06/18	2	1	794	45	189	11
Hen Harrier	24/07/18	3	1	558	74	527	70
Hen Harrier	25/07/18	4	2	1519	87	516	30
Buzzard	27/03/18	1a	1	1875	260	493	68
Kestrel	03/11/17	5a	1	1261	150	441	53

Table 1: Details and calculations of flight paths not entirely located within a viewshed

Table 2 below presents the details on the viewshed area for each VP while **Figures 1** to **3**, below illustrate the viewshed areas within each VP Arc.

Vantage Point	VP Arc (ha)	Viewshed area within VP Arc (ha)	Viewshed coverage within VP Arc (%)	Turbine Buffer Area within Viewshed (ha)	No. of turbines within viewshed	Total survey effort (hrs)
VP1a	628	436	69.43	187.57	4	144
VP2	628	395	62.90	332.16	8	144
VP3	628	282	44.9	218.8	6	144
VP4a	628	303	48.2	171.3	5	144
VP5a	628	599	95.4	457.9	11	144
VP7a	628	422	67.20	268.27	6	144
VP8a	628	451	71.82	330.28	7	144
VP9	628	382	60.83	10.52	0	144

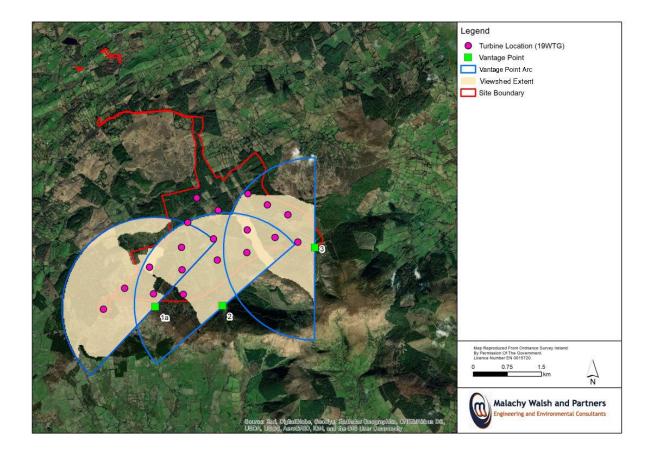


Figure 1: Viewshed maps for VP1a, VP2 and VP3.

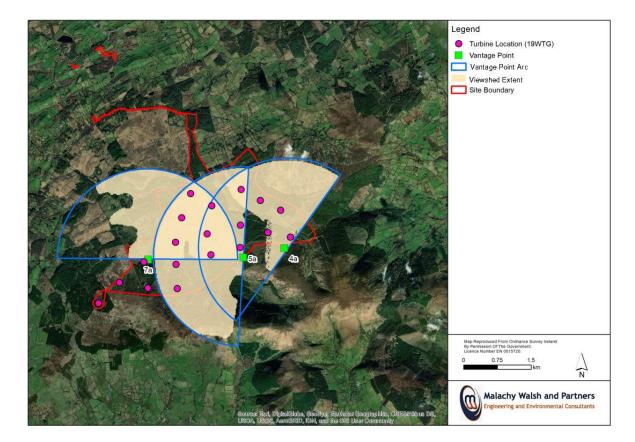


Figure 2: Viewshed maps for VP4a, VP5a and VP7a.

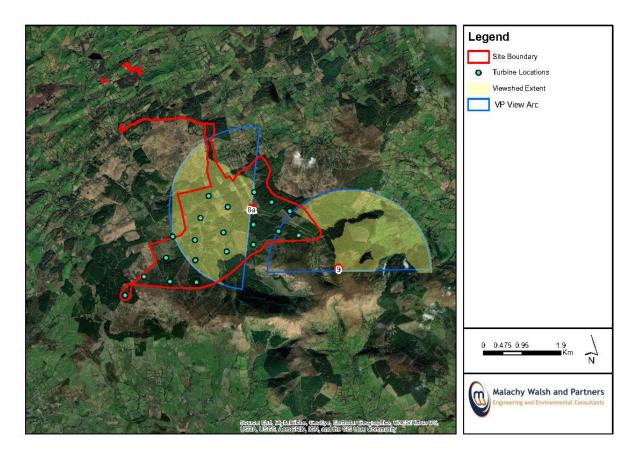


Figure 3: Viewshed maps for VP8a and VP9.

2.2 BIRD BIOMETRICS AND FLIGHT DURATION AT PCH

The amount of time a species was observed flying at heights of between 25 and 175 metres, i.e. within the PCH, is presented in **Table 3** below. Species-specific morphometric measurements and flight speeds are also shown in **Table 3** Total monthly values of bird-seconds at PCH within all viewsheds are set out in **Table 4**.

Species (BTO Code)	Length (m)	Wingspan (m)	Mean flight		2016/2017			Total bird-secs at PCH over 24		
species (bio code)		to ingopan (in)	speed (m/s)	Winter	Breeding	Total over 12- months	Winter	Breeding	Total over 12- months	Months
Buzzard (BZ)	0.54	1.2	13.3	0	702	702	265	628	893	1595
Golden Plover (GP)	0.275	0.715	17.9	20250	0	20250	43950	0	43950	64200
Hen Harrier (HH)	0.48	1.1	12	78	1362	1440	0	2413	2413	3853
Kestrel (K.)	0.34	0.76	10.1	1700	1025	2725	5084	303	5387	8112
Mallard (MA)	0.58	0.9	18.5	0	115	115	0	163	163	278
Peregrine (PE)	0.42	1.02	12.1	0	0	0	60	110	170	170
Sparrowhawk (SH)	0.33	0.67	10	0	0	0	220	0	220	220

Table 3: Bird biometrics and bird-seconds spent by species at Potential Collision Height (25-175m)

Table 4: Monthly values of bird-seconds spent at PCH (25-175m)

			Monthly values of bird-seconds spent at PCH within viewsheds												
Species	Year	September	October	November	December	January	February	March	April	May	June	July	August		
Buzzard	2016/17	0	0	0	0	0	0	0	100	470	0	132	0		
Buzzaru	2017/18	0	0	0	0	0	130	135	0	0	0	228	400		
Golden	2016/17	0	0	0	20250	0	0	0	0	0	0	0	0		
Plover	2017/18	0	0	43350	0	0	0	600	0	0	0	0	0		
Hen Harrier	2016/17	48	30	0	0	0	0	53	729	460	80	0	40		
пеп паттег	2017/18	0	0	0	0	0	0	0	1052	0	691	570	100		
Kestrel	2016/17	450	158	95	0	849	0	148	0	0	30	685	310		
Kestiel	2017/18	3740	1116	73	0	0	0	155	23	0	0	240	40		
Mallard	2016/17	0	0	0	0	0	0	0	115	0	0	0	0		
Ivialiaru	2017/18	0	0	0	0	0	0	0	10	153	0	0	0		
Peregrine	2016/17	0	0	0	0	0	0	0	0	0	0	0	0		
Peregnile	2017/18	0	0	0	0	0	60	110	0	0	0	0	0		
Sparrowhawk	2016/17	0	0	0	0	0	0	0	0	0	0	0	0		
Sparrownawk	2017/18	200	0	0	0	0	20	0	0	0	0	0	0		

2.3 BAND COLLISION RISK MODELLING

2.3.1 Regular and Random Flight Models – Stage 1

The Stage 1 calculations uses the VP survey data for each of the target species to calculate the number of predicted bird transits to fly through the turbine blade swept areas. Appendix 1 presents the Stage 1 calculations for each of the target species. Stage 1 calculations are carried out using one of two methods based on whether flight activity follows a regular pattern or is random – the "Regular Flight Model" or the "Random Flight Model", respectively.

For predictable flightlines, like those created by geese following a migratory route or those produced by the regular travel of divers to the coast from nest sites, the "Regular Flight Model" is used. This model involves calculating the number of birds flying through the rotor swept area each year.

The "Random Flight Model" is used in cases of irregular flight activity such as that displayed by raptors occupying a recognized territory, or by waders. This model requires calculation of the proportion of time birds were observed flying per unit of survey area.

More information on both Regular and Random Flight Model calculations have been made freely available by the SNH (2000) at: <u>https://www.nature.scot/wind-farm-impacts-birds-calculating-theoretical-collision-risk-assuming-no-avoiding-action</u>.

The recorded flights of target species from the eight vantage points (VP1a, VP2, VP3, VP4a, VP5a, VP7a, VP8a, and VP9) at the Carrownagowan Wind Farm site were deemed to be randomly distributed - that is, with a potential to occur anywhere within a viewshed. Consequently, the "Random Flight Model" was used for each target species to determine the predicted number of transits thorough the site.

The proportion of flight time between 25 and 175m for a bird species for each of the VPs was calculated. If multiple birds were observed in one flight, the seconds spent at PCH were calculated by multiplying the number of birds observed per flight by the duration of the flight at PCH (in line with SNH, 2000).

The hours that a species may potentially be active in either a breeding or non-breeding season was calculated to include daylight, one hour before sunrise, and one hour after sunset (dusk) for all species with the exception of mallard and golden plover. For these two species it was calculated as daylight, one hour before sunrise, one hour after sunset (dusk), and 25% of the night (SHN, 2017). These flight activity hours were calculated from timeanddate.com (2020), Band (2012), and Wilson *et al.* (2015).

This flight activity was used to calculate the number of bird passes through the rotor for each VP in turn and per turbine within each viewshed before being calculated for the entire 19-turbine wind farm. The Stage 1 calculation was carried out for each season - breeding and wintering - and for each species.

2.3.2 Probability of Collision – Stage 2

Stage 2 calculates the probability of a bird flying through the rotor being struck, and is determined using the same method for both regular and random flightlines using a publicly available SNH

collision risk probability model spreadsheet available at: <u>https://www.nature.scot/wind-farm-impacts-birds-calculating-probability-collision</u>.

The spreadsheet provides for a scenario in which the bird is either flapping or gliding and where the transit is either upwind or downwind. For collision risk assessment, the mean probability of both flapping and gliding behaviour was used, with the exception of mallard (*Anas platyrhynchos*) where only flapping behaviour was considered, (see **Table 10** below). For a detailed explanation of Stage 2 calculations see Band *et al.* (2007). A completed spreadsheet of Stage 2 calculations for buzzard is included in **Appendix 1** as an example.

For Stage 2 the probability of collision depends on the size of the bird (length and wingspan), the breadth and pitch of the turbine blades, the rotation speed of the turbine, and the flight speed of the bird (Band *et al.*, 2007). **Table 5** below lists the wind farm and turbine characteristics used in this analysis. Values for the mean pitch of a turbine blade (degrees), the maximum chord (metres), and the rotational speed (rotations per minute) were obtained from a senior wind farm engineer with Malachy Walsh and Partners based on knowledge and specifications of the proposed turbine dimensions.

Parameter	Specification
Total number of proposed turbines	19
Number of blades per turbine rotor	3
Rotor diameter (metres)	136
Rotor radius (metres)	68
Hub height (metres)	101
Maximum height to blade tip (metres)	169
Minimum height to blade tip (metres)	33
Swept area (metres ²)	14527
Mean pitch of blade (degrees)	5
Maximum chord (metres)	4.1
Rotational speed (rotations per minute)	5.6 - 14.0
Mean rotational speed (rotations per minute)	9.8
Average rotational period (seconds)	6.12
Turbine operational time (%)	85

Table 5: Turbine technical parameters

Bird biometric parameters (**Table 3**) were obtained from Wilson *et al.* (2015), Alerstam *et al.* (2007), and the British Trust for Ornithology (BTO) (2000).

2.3.3 Calculating Collision Risk

For each target species included in the CRM, collision risk predictions were calculated for both relevant seasonal periods within each 12-month cycle (see **Table 6** for the seasonal divisions for each species). The sum of these separate summer and winter CRM results was taken as the predicted annual collision risk rather than using results from a single all-year CRM. This method minimised any potential biases that may arise from seasonal variation in daylength and the number of hours of activity available to each species in each month. This was to increase precision of the CRM and to

ensure that any potential underestimation or overestimation for a species risk of collision was minimised as much as possible. For example, all sightings of buzzard are likely to be of resident birds from the same population. However, during winter some birds may disperse from the area meaning that a single all-year CRM would likely underestimate the risk of collision. Conversely, local golden plover are part of wintering population so producing a single, all-year CRM would likely overestimate collision risk of this species.

Species	Breeding Season	Winter Season
Buzzard	April to August	September to March
Golden Plover	April to August	September to March
Hen Harrier	March to August	September to February
Kestrel	April to August	September to March
Mallard	April to August	September to March
Peregrine	March to August	September to February
Sparrowhawk	whawk April to August Septem	

Table 6: Seasonal divisions of species (British Trust for Ornithology (BTO) (2020), and Wilson et al. (2015))

Collision data derived from Stage 1 and Stage 2 were multiplied together to calculate the risk of collision for the target bird species per season. Multiplying Stage 1 by Stage 2 produces a predicted collision mortality rate that assumes birds take no action to avoid collision. In practice however, birds probably show a very high degree of collision avoidance which dramatically lowers predicted mortality (Band *et al.*, 2007). An avoidance rate was applied to the collision risk, which considerably reduces the predicted risk. The collision risk was then multiplied by 30 years to calculate the risk over the lifetime of the wind farm for each season. Following this, the winter and breeding results were added to estimate the risk per year.

3 RESULTS

The following target species were observed flying at the collision risk height at Carrownagowan over the two year survey period:

- Buzzard (Buteo buteo)
- Golden Plover (Pluvialis apricaria)
- Hen Harrier (*Circus cyaneus*)
- Kestrel (Falco tinnunculus)
- Peregrine (Falco peregrinus)
- Sparrowhawk (Accipiter nisus).

Mallard is a green-listed species in Ireland and is classed as least conservation concern but was also included in this collision risk assessment as it is considered to be a wind farm-sensitive species.

3.1 STAGE 1 CALCULATIONS RESULTS

Table 7, Table 8 and Table 9 below, show results of Stage 1 calculations – the number of birdsestimated to fly through the blades of the proposed turbines at the Carrownagowan Wind Farm.Both Table 7 and Table 8 report the number of transits predicted per turbine within the viewshed ofeach VP during each breeding season and each winter season, while Table 9 gives further details on

the mean predicted transits through each turbine per season, and mean predicted transits per season through all turbines across the proposed 19-turbine site.

The viewshed for VP9 does not contain any of the proposed wind turbines and thus the flight activity recorded in this viewshed does not make any contribution to the CRM. Consequently, the survey data obtained from VP9 was omitted from the CRM and consequently, is excluded from the worked spreadsheets in **Appendix 1**.

Creation	Veer	VP1a			VP2			VP3			VP4a		
Species	Year	Winter	Breeding	Total									
Buzzard	2016/17	0	0	0	0	5.48	5.48	0	0	0	0	0	0
Duzzaru	2017/18	1.13	0	1.13	1.77	0	1.77	0	0	0	0	6.43	6.43
Golden Plover	2016/17	0	0	0	0	0	0	0	0	0	735.35	0	735.35
Golden Plover	2017/18	0	0	0	0	0	0	0	0	0	0	0	0
Hen Harrier	2016/17	0	0	0	0	6.90	6.90	0	10.16	10.16	0	5.89	5.89
nen namer	2017/18	0	0	0	0	10.96	10.96	0	2.33	2.33	0	3.41	3.41
Kestrel	2016/17	2.70	0	2.70	5.70	0	5.70	4.02	0	4.02	0.50	0	0.50
Restrei	2017/18	0.73	0	0.73	2.45	0	2.45	37.49	0	37.49	0.36	0	0.36
Mallard	2016/17	0	0	0	0	0	0	0	1.80	1.80	0	0	0
wanaro	2017/18	0	0	0	0	0	0	0	1.38	1.38	0	0	0
Deve evine	2016/17	0	0	0	0	0	0	0	0	0	0	0	0
Peregrine	2017/18	0	0	0	0	0	0	0	0	0	0	0	0
Snormouthout	2016/17	0	0	0	0	0	0	0	0	0	0	0	0
Sparrowhawk	2017/18	0.25	0	0.25	0	0	0	1.93	0	1.93	0	0	0

Table 7: Predicted transits per turbine within the viewsheds of VP's 1a, 2, 3 and 4a for the 2016/17 and 2017/18 breeding seasons and the 2016/17 and 2017/18 winter

seasons.

Species	Year		VP5a			VP7a			VP8a	
Species	fear	Winter	Breeding	Total	Winter	Breeding	Total	Winter	Breeding	Total
Buzzard	2016/17	0	5.88	5.88	0	1.15	1.15	0	3.17	3.17
Duzzaru	2017/18	0.36	7.23	7.59	1.15	0	1.15	0	1.15	1.15
Golden Plover	2016/17	0	0	0	0	0	0	0	0	0
Golden Plovel	2017/18	0	0	0	0	0	0	0	0	0
Hen Harrier	2016/17	0	0	0	1.17	5.90	7.07	0	0	0
nen namer	2017/18	0	11.73	11.73	0	20.79	20.79	0	1.87	1.87
Kestrel	2016/17	0	2.47	2.47	9.04	6.04	15.08	1.84	9.76	11.60
Kestrei	2017/18	25.86	0.14	26.00	1.27	5.26	6.53	0	0	0
Mallard	2016/17	0	1.70	1.70	0	0	0	0	0	0
wanaro	2017/18	0	0	0	0	5.23	5.23	0	0.38	0.38
Deversion	2016/17	0	0	0	0	0	0	0	0	0
Peregrine	2017/18	0	0	0	0	0	0	0	0	0
Chornouchourt	2016/17	0	0	0	0	0	0	0	0	0
Sparrowhawk	2017/18	0	0	0	0	0	0	0	0	0

Table 8: Predicted transits per turbine within the viewsheds of VP's 5a, 7a, 8a and 9 for the 2016/17 and 2017/18 breeding seasons and the 2016/17 and 2017/18 winter

seasons.

Species	Year	Mean transits	predicted per turbir	ne per season	Mean transits predicted across entire proposed wind farm site per season				
		Winter	Breeding	Entire Year	Winter	Breeding	Entire Year		
Buzzard	2016/2017	0	1.96	1.96	0	37.25	37.25		
Buzzaru	2017/2018	0.56	1.85	2.41	10.64	35.19	45.83		
Golden Plover	2016/2017	91.92	0	91.92	1746.46	0	1746.46		
Golden Plover	2017/2018	0	0	0	0	0	0		
Hen Harrier	2016/2017	0.15	3.61	3.76	2.78	68.50	71.28		
nen namei	2017/2018	0	6.39	6.39	0	121.35	121.35		
Kestrel	2016/2017	2.98	2.28	5.26	56.53	43.39	99.92		
Kestrei	2017/2018	8.52	0.67	9.19	161.87	12.82	174.69		
Mallard	2016/2017	0	0.44	0.44	0	8.32	8.32		
Ivialiaru	2017/2018	0	0.87	0.87	0	16.59	16.59		
Deveguine	2016/2017	0	0	0	0	0	0		
Peregrine	2017/2018	0	0	0	0	0	0		
Sparrowhawk	2016/2017	0	0	0	0	0	0		
Sparrownawk	2017/2018	0.27	0	0.27	5.18	0	5.18		

Table 9: Mean number of predicted transits per turbine per season, and mean number of predicted transits across the entire wind farm site per season.

3.2 STAGE 2 CALCULATIONS RESULTS

The second stage of calculations determines the percentage risk of collision of a bird flying through a rotating turbine, the results of which are presented in **Table 10** below.

The highest values or "worst-case scenario" collision percentages occur when the bird flies upwind using flapping behaviour whilst the turbine is rotating at its fastest speed. Conversely, "best-case scenario" or lowest percentage values occur when a bird flies downwind using a gliding flight whilst the turbine is rotating at its slowest speed. The collision risk assessment in this case used the mean of these two scenarios for each species, the values of which can be found in the final column of **Table 10** below.

Species	Flappin	g bird, p	Gliding	Mean	
Species	upwind	downwind	upwind	downwind	probability
Buzzard	6.7%	5.2%	6.4%	5.0%	5.80%
Golden Plover	5.2%	4.1%	5.0%	3.9%	4.60%
Hen Harrier	6.7%	5.0%	6.4%	4.8%	5.70%
Kestrel	6.4%	4.4%	6.3%	4.3%	5.35%
Mallard	5.9%	4.8%	λ	λ	5.35%
Peregrine	6.4%	4.8%	6.2%	4.6%	5.50%
Sparrowhawk	6.3%	4.4%	6.2%	4.3%	5.30%

Table 10: Probability of collision – Stage 2 calculation outputs

3.3 COLLISION RATES

The theoretical collision rates for each species per season, based on the assumption that the bird makes no attempt to avoid the moving rotors, is presented in **Table 11** below. Rates were calculated using the data collected from two consecutive years of bird surveying at the Carrownagowan Wind Farm from 2016 to 2018. In general, species show a noticeably higher rate of predicted collisions per season in 2017/18 when compared with rates from 2016/17.

Species	Collision	Year	Predicted collis	Predicted collisions per season with no avoidance measures applied					
	Probability		Winter	Breeding	Total				
Buzzard	5.80%	2016/2017	0	2.16	2.16				
Duzzaru	5.6676	2017/2018	0.62	2.04	2.66				
Golden Plover	4.55%	2016/2017	79.46	0	79.46				
Golden Plover	4.55%	2017/2018	0	0	0				
Hen Harrier	5.70%	2016/2017	0.16	3.90	4.06				
	5.70%	2017/2018	0	6.92	6.92				
Kestrel	5.35%	2016/2017	3.02	2.32	5.34				
Kestrer	5.5570	2017/2018	8.66	0.69	9.35				
Mallard	5.35%	2016/2017	0	0.46	0.46				
Wallaru	5.55%	2017/2018	0	0.89	0.89				
Dorogrino	5.50%	2016/2017	0	0	0				
Peregrine	5.50%	2017/2018	0	0	0				
Sparrowhawk	5.30%	2016/2017	0	0	0				
Sparrowllawk	5.30%	2017/2018	0.27	0	0.27				

Table 11: Predicted collision per season assuming no avoidance measures taken by bird.

3.3.1 Collision Rates with Application of Specific Avoidance Rates

The final phase of the collision risk assessment is to apply avoidance rates to the predicted collision rates from **Table 11** above, to correct for a bird's ability to identify and move around turbines. The avoidance rates used were those recommended by SNH (2018).

The seasonal values for each species for each year were added together to give the predicted number of annual collisions for both of the 12-month datasets. Finally, the number of collisions predicted to occur over the life-span of the wind farm (30 years) was calculated (refer to **Table 12** below).

Species	Avoidance Rate	Year		l collisions per vidance rates a		Predicted collisions over 30-year lifetime of proposed wind farm				
	Rate		Winter	Breeding	Total	Winter	Breeding	Total		
Buzzard	98%	2016/17	0	0.04	0.04	0	1.27	1.27		
Buzzaru	5870	2017/18	0.01	0.04	0.05	0.37	1.22	1.59		
Golden Plover	98%	2016/17	1.59	0	1.59	47.68	0	47.68		
Golden Plover	5876	2017/18	0	0	0	0	0	0		
Hen Harrier	99%	2016/17	0.001	0.04	0.041	0.05	1.17	1.22		
	5570	2017/18	0	0.07	0.07	0	2.08	2.08		
Kestrel	95%	2016/17	0.15	0.12	0.27	4.54	3.48	8.02		
Kestrer	53/6	2017/18	0.43	0.03	0.46	12.99	1.03	14.02		
Mallard	98%	2016/17	0	0.01	0.01	0	0.27	0.27		
Wallaru	5070	2017/18	0	0.02	0.02	0	0.53	0.53		
Devegrine	0.00/	2016/17	0	0	0	0	0	0		
Peregrine	Peregrine 98%	2017/18	0	0	0	0	0	0		
Charlenthaut	98%	2016/17	0	0	0	0	0	0		
Sparrowhawk	98%	2017/18	0.005	0	0.005	0.16	0	0.16		

Table 12: Number of collisions	predicted with the application of	avoidance rates specified by	SNH (2018).
			···· (=•=•/·

Table 13 below presents the final collision risk modelling results for each species. The predicted number for all species is less than one bird – that is to say, it is predicted that less than one bird a year will collide with the turbine blades. The amount of predicted collisions per 30 years is also relatively low for most species. All peregrine flights used in the model were within VP9's viewshed, and since there are no turbines in this viewshed, the predicted number of peregrine collisions is zero. There are, however, two species with comparatively high rates of predicted collisions over 30 years, namely kestrel and golden plover.

Species	Mean no. of predicted collisions per year	Mean no. of predicted collisions per 30 years	Equivalent to 1 bird every x (years)
Buzzard	0.045	1.43	21
Golden Plover	0.795	23.84	1.26
Hen Harrier	0.056	1.65	18.18
Kestrel	0.365	11.02	2.72
Mallard	0.015	0.40	75
Peregrine	0	0	0
Sparrowhawk	0.003	0.08	375

Table 13: Mean number of collisions predicted using avoidance rates specified by SNH (2018).

4 WIND FARM MORTALITY AND BACKGROUND MORTALITY

The population level consequences of predicted collision risks can be assessed by considering the additional mortality that would be caused, which is the absolute increase, relative to background mortality rates in the population, where a threshold level of a 1% increase in annual mortality is used to establish whether the predicted collision impact will be significant (Percival, 2003). A negligible magnitude impact would be predicted if the collision mortality was to represent an increase of less than 1% on the background mortality rate.

The estimates of the potential increase in annual mortality provided below are for the hen harrier, kestrel, buzzard, and golden plover. For the breeding hen harrier population of the Slieve Bernagh – Keeper Hill area, an increase of 2% in mortality rate was predicted.

Further assessment will be carried out in the ornithological impact assessment in Chapter 7 of the EIAR.

Species	Local population	National population data	Adult mortality	Percentage increase in annual mortality		
	data		Rate ¹	Locally	Nationally	
Hen harrier	14 ²	216	0.19	2.018	0.131	
Breeding	14	210	0.15	2.010	0.131	
Kestrel						
Breeding and	50 ³	12100	0.31	2.332	0.010	
Winter						
Buzzard	12 ⁴	1500	0.19	5.263	0.017	
Breeding	12	1500	0.15	5.205	0.017	
Golden plover						
(Wintering)	11221 ⁵	99870	0.27	0.003	0.026	

Table 14: Calculations of potential increases in annual mortality

5 CONCLUSION

A CRM has been completed for the proposed Carrownagowan Wind Farm development. The Band method for collision risk modelling operates using many assumptions, particularly regarding bird behaviour and characteristics, and relies on accurate information regarding species avoidance rates, turbine specifications, and the recording of data. As a result of the assumptions and the limitations collision risk modelling presents, the predicted collisions should only be considered indicative of the potential magnitude of the predicted collision risk.

¹ https://app.bto.org/birdfacts/results/bob3200.htm

² Estimated breeding population of Slieve Bernagh – Keeper Hill Area (Rudduck *et al.*, 2016)

³ Estimated population per 1km² (Crowe, et al., 2014) X 4 hectads covering the entire proposed project

⁴ Estimated population within 10km of proposed project (Pers. comm. John Murphy (Clare BWI) & Malachy Walsh and Partners)

⁵ Estimated golden plover wintering population of Shannon-Fergus Estuary (Lewis et al., 2016)

It is clear from the VP surveys that there is a considerable amount of hen harrier activity in the area with much of it seemingly at PCH. However, as discussed above, collision risk modelling is dependent on many assumptions and can be prone to biases.

Kestrel, a year-round resident of the area, has a prediction of 10 collisions every 30 years. This value, however, is also liable to be rather tenuous as a large percentage of recorded kestrel flight activity has involved hovering birds which suggests that the mean kestrel flight speed used in the CRM will not be indicative of the mean flight speed of the kestrels observed during the surveys.

With regards hen harrier at Carrownagowan, the predicted percentage increase in annual mortality for the Slieve Bernagh population is sufficiently above the 1% threshold to require further assessment.

It is probably safest to interpret the results of CRM analyses as only indicating the order of magnitude of the predicted collision risk.

6 REFERENCES

Alerstam, T., Rosén, M., Bäckman, J., Ericson, P.G. & Hellgren, O.(2007). Flight speeds among bird species: allometric and phylogenetic effects. *PLoS biology*, *5*(8), p.e197.

Band, W., Madders, M. & Whitfield, D.P. (2007) "Developing field and analytical methods to assess avian collision risk at wind farms", In De Lucas, M. Et al. (eds.) *Birds and wind farms: Risk assessment and mitigation*. Madrid: Quercus/Libreria Linneo, pp.259-275.

Band, B. (2012). Using a collision risk model to assess bird collision risks for offshore windfarms. *Guidance document. SOSS Crown Estate.* Available at: https://tethys.pnnl.gov/sites/default/files/publications/Band%202012.pdf

British Trust for Ornithology (2020). *Welcome to BirdFacts*. Available at: <u>https://www.bto.org/understanding-birds/birdfacts</u>.

Crowe, O., Musgrove, A.J. & O'Halloran, J. (2014) Generating population estimates for common and widespread breeding birds in Ireland. *Bird Study*, *61(1)*, pp.82-90.

Masden, E. A., & Cook, A. S. C. P. (2016). Avian collision risk models for wind energy impact assessments. *Environmental Impact Assessment Review*, 56, 43-49.

Percival, S.M. (2003). Birds and Wind farms in Ireland: A Review of Potential Issues and ImpactAssessment.SustainableEnergyIreland.Availableat:https://tethys.pnnl.gov/sites/default/files/publications/Percival_2003.pdf

Ruddock, M., Mee, A., Lusby, J., Nagle, A., O'Neill, S. & O'Toole, L. (2016). The 2015 National Survey of Breeding Hen Harrier in Ireland. *Irish Wildlife Manuals*, No. 93. National Parks and Wildlife Service, Department of the Arts, Heritage and the Gaeltacht, Ireland. Available at: <u>https://www.npws.ie/sites/default/files/publications/pdf/IWM93.pdf</u>

Scottish Natural Heritage (2000). *Windfarms and Birds - Calculating a theoretical collision risk assuming no avoiding action.* SNH Guidance Note. Available at <u>http://www.snh.gov.uk/docs/C205425.pdf</u>

Scottish Natural Heritage (2017). *Recommended Bird Survey Methods to Inform Impact Assessment on Onshore Wind Farms*. Version 2. Available at: <u>https://www.nature.scot/sites/default/files/2018-06/Guidance%20Note%20-</u>

<u>%20Recommended%20bird%20survey%20methods%20to%20inform%20impact%20assessment%20</u> of%20onshore%20windfarms.pdf

Scottish Natural Heritage (2018). *Use of avoidance rates in the SNH wind farm Collision Risk Model*. Available at: <u>https://www.nature.scot/wind-farm-impacts-birds-use-avoidance-rates-snh-wind-farm-collision-risk-model</u>.

timeanddate.com (2020). *Ennis, Ireland – Sunrise, Sunset, and Daylength*. Available at: <u>https://www.timeanddate.com/sun/ireland/ennis</u>

Wilson, M., Fernández-Bellon, D., Irwin, S. & O'Halloran, J. (2015). *The interactions between Hen Harriers and wind turbines: WINDHARRIER - Final Project Report*. School of Biological Earth & Environmental Sciences at University College Cork (BEES). Available at: <u>https://www.ucc.ie/en/media/research/planforbio/forestecology/WINDHARRIERFinalProjectReport.pdf</u>

Appendix 1

Buzzard, Breeding VP Surveys: April 2017 - Aug 2017	,								
Measurements	Code	Value	1						
Rotor radius (metres)	r	68							
Rotor diameter (metres)	D	136							
Max chord width of turbine blades (metres)	d	4.1							
Buzzard length (metres)	1	0.54							
Average flight speed of Buzzard (m/s)	v	13.3							
Wingspan (m)		1.2							
Mean pitch of blade (degrees)		5							
Rotors per turbine		3							
Rotational period (seconds)		6.12							
Turbine operational time (%)		85							_
			Vantage 1a	e Point 2	3	4a	5a	7a	8a
Survey time over 5 months (secs)	s		108000	108000	3 108000	108000	108000	108000	108000
Total flight-time between 25 - 175m (bird-secs)	s PCH		0	200	0	0	325	45	108000
• • •			4			5			7
No. of turbines in viewshed	X			8	6		11	6	
Survey area visible from VP (hectares)	Avp		436	395	282	303	599	422	451
Area of risk, i.e. 500m buffer of turbines within viewshed									
(hectares)	Arisk		187.57	332.16	218.8	171.3	457.9	268.27	330.28
Availability of species activity during survey period (hours)	Ва		2692	2692	2692	2692	2692	2692	2692
Stage 1 Calculations									_
Measurements	Code	Calculation							
Proportion of flight-time between 25 - 175m	t1	PCH/s	0.0000	0.0019	0.0000	0.0000	0.0030	0.0004	0.0012
Flight activity per visible unit of area	F	t1/Avp	0	4.6882E-06	0	0	5.0238E-06	9.87362E-07	2.71E-06
Proportion of time in risk area	Trisk	F*Arisk	0	0.00155724	0	0	0.0023004	0.00026488	0.00089507
Bird occupancy of risk area	n	Trisk*Ba	0	4.19209902	0	0	6.19267777	0.713055727	2.40952238
Risk volume	Vw	(Arisk*D)*10000	255095200	451737600	297568000	232968000	622744000	364847200	449180800
Actual volume of air swept by rotors	0	x*(Pi*r ² (d+l))	269479.3216	538958 643	404218 982	336849 152	741068 134	404218.9824	471588.813
Bird occupancy of rotor swept area (bird-secs)	b	3600*(n*(o/Vw))	0	18.0054191		0		2.84401354	9.10700921
Time taken for bird to pass through rotors (secs)	t2	(d+l)/v	0.34887218			0.34887218			0.34887218
Number of bird passes through the rotor during survey period	N	b/t2	0	51.6103607		0		8.15202157	26.1041428
			0	51.0105007	Ū	0	70.0430304	0.15202157	20.1041420
Total transits adjusted for maximum operation of turbines (85%)	Tn	N*0.85	0	43.8688066	0	0	64.6371436	6.929218334	22.1885214
Number of transits per turbine within viewshed	TnT	Tn/x	0	5.48360082	0	0	5.87610397	1.154869722	3.16978877
Average TnT of all VP's	ATnT	$(TnT_1+TnT_2+TnT_3+)/8$	1.960545409						
Number of transits across windfarm	Т	ATnT*(Total no. turbines)	37.25036278						
		Collision Probability (Stage 2)	5.80%	6					
			2.30,						-
		Collisions during study period	T*Collision Probability	2.16052104					
		Collisions during study period with 98% Avoidance Rate	*0.02	0.04321042					
		Over 30-year duration of windfarm	*30	<u>1.29631262</u>					

Buzzard, Winter VP Surveys: Sep 2017 - March 2018									
Measurements	Code	Value	1						
Rotor radius (metres)	r	68							
Rotor diameter (metres)	D	136							
Max chord width of turbine blades (metres)	d	4.1							
Buzzard length (metres)	I	0.54							
Average flight speed of Buzzard (m/s)	v	13.3							
Wingspan (m)		1.2							
Mean pitch of blade (degrees)		5							
Rotors per turbine		3							
Rotational period (seconds)		6.12							
Turbine operational time (%)		85							
			Vantage	Point					
			1a	2	3	4a	5a	7a	8a
Survey time over 7 months (secs)	s		151200	151200	151200	151200	151200	151200	151200
Total flight-time between 25 - 175m (bird-secs)	PCH		68	100	0	0	30	67	0
No. of turbines in viewshed	x		4	8	6	5	11	6	7
Survey area visible from VP (hectares)	Avp		436	395	282	303	599	422	451
Area of risk, i.e. 500m buffer of turbines within viewshed (hectares)	Arisk		187.57	332.16	218.8	171.3	457.9	268.27	330.28
Availability of species activity during survey period (hours)	Ва		2523	2523	2523	2523	2523	2523	2523
Stage 1 Calculations									
Measurements	Code	Calculation							
Proportion of flight-time between 25 - 175m	t1	PCH/s	0.0004	0.0007	0.0000	0.0000	0.0002	0.0004	0.0000
Flight activity per visible unit of area	F	t1/Avp			0	0		1.05005E-06	0
Proportion of time in risk area	Trisk	F*Arisk		0.0005562	0	0		0.000281697	0
Bird occupancy of risk area	n	Trisk*Ba	0.488147716	1.4031875	0	0	0.3826754	0.710722264	0
Risk volume	Vw	(Arisk*D)*10000	255095200	451737600	297568000	232968000	622744000	364847200	449180800
Actual volume of air swept by rotors	0	x*(Pi*r ² (d+I))	269479.3216	538958 64	404218 98	336849 15	741068 13	404218.9824	471588.81
Bird occupancy of rotor swept area (bird-secs)	b	3600*(n*(o/Vw))		6.0268086		0		2.834706555	0
Time taken for bird to pass through rotors (secs)	t2	(d+I)/v	0.34887218					0.34887218	0.3488722
Number of bird passes through the rotor during survey period	N	b/t2		17.275119		0		8.125344219	0
Total transits adjusted for maximum operation of turbines (85%)	Tn	N*0.85	4.5230304	14.683851		0		6.906542586	0
Number of transits per turbine within viewshed	TnT	Tn/x		1.8354814		0		1.151090431	0
			112007070	1.000 1011			0.0001120	11101000101	
Average TnT of all VP's	ATnT	(TnT ₁ +TnT ₂ +TnT ₃ +)/8	0.56005528						
Number of transits across windfarm	Т	ATnT*(Total no. turbines)	10.64105031						
			10.04105051						
		Collision Probability (Stage 2)	5.80%						
		Collisions during study period	T*Collision Probabilty	0.6171809					
		Collisions during study period with 98% Avoidance Rate	*0.02	0.0123436					
		Over 30-year duration of windfarm	*30	0.3703086					

Buzzard, Breeding VP Surveys: April 2018 - Aug 2018									
Measurements	Code	Value							
Rotor radius (metres)	r	68							
Rotor diameter (metres)	D	136							
Max chord width of turbine blades (metres)	d	4.1							
Buzzard length (metres)	1	0.54							
Average flight speed of Buzzard (m/s)	v	13.3							
Wingspan (m)		1.2							
Mean pitch of blade (degrees)		5							
Rotors per turbine		3							
Rotational period (seconds)		6.12							
Turbine operational time (%)		85							
			Vantago 1a	e Point 2	3	4a	5a	7a	8a
Survey time over 5 months (secs)	s		108000	108000	108000	108000	108000	108000	108000
Total flight-time between 25 - 175m (bird-secs)	PCH		0	0	0	108000	400	0	48
• • •	х		4	8	6	5	11	6	48
No. of turbines in viewshed								6 422	-
Survey area visible from VP (hectares)	Avp		436	395	282	303	599	422	451
Area of risk, i.e. 500m buffer of turbines within viewshed			107.57	222.46	24.0.0	171.0	457.0	260.27	222.20
(hectares)	Arisk		187.57	332.16	218.8	171.3	457.9	268.27	330.28
Availability of species activity during survey period (hours)	Ва		2692	2692	2692	2692	2692	2692	2692
Stage 1 Calculations									
Measurements	Code	Calculation	1						
Proportion of flight-time between 25 - 175m	t1	PCH/s	0.0000	0.0000	0.0000	0.0017	0.0037	0.0000	0.0004
Flight activity per visible unit of area	F	t1/Avp	0	0	0	5.501E-06	6.183E-06	0	9.855E-07
Proportion of time in risk area	Trisk	F*Arisk	0	0	0	0.0009422	0.0028313	0	0.000325
Bird occupancy of risk area	n	Trisk*Ba	0	0	0	2.5365215	7.6217572	0	0.87619
Risk volume	Vw	(Arisk*D)*10000	255095200	451737600	297568000	232968000	622744000	364847200	44918080
Actual volume of air swept by rotors	0	x*(Pi*r ² (d+l))	269479.3216	538958.64	404218.98	336849 15	741068 13	404218.9824	471588.8
Bird occupancy of rotor swept area (bird-secs)	b	3600*(n*(o/Vw))	0	0	0	13.203231		0	3.311639
Time taken for bird to pass through rotors (secs)	t2	(d+l)/v	0.34887218	0.3488722	-			0.34887218	0.348872
Number of bird passes through the rotor during survey period	N	b/t2	0	0	0		93.592244		9.492415
number of bird passes through the rotor during survey period			0	0	0	37.043403	55.552244	0	5.452415
Total transits adjusted for maximum operation of turbines (85%)	Tn	N*0.85	0	0	0	32 168648	79.553408	0	8.068553
Number of transits per turbine within viewshed	TnT	Tn/x	0	0	0	6.4337297		0	1.152650
·········		,			-			-	
Average TnT of all VP's	ATnT	(TnT ₁ +TnT ₂ +TnT ₃ +)/8	1.852313512						
Number of transits across windfarm	т	ATnT*(Total no. turbines)	35.19395672						
		Collision Probability (Stage 2)	5.809	%					_
		Collisions during study period	T*Collision Probability	2.0412495					
		Collisions during study period with 98% Avoidance Rate	*0.02	0.040825					
		Over 30-year duration of windfarm	*30	<u>1.2247497</u>					

Golden Plover, Winter VP Surveys: Sep 2016 - March 2	017								
Measurements	Code	Value	T						
Rotor radius (metres)	r	68							
Rotor diameter (metres)	D	136							
Max chord width of turbine blades (metres)	d	4.1							
Golden Plover length (metres)	1	0.275							
Average flight speed of Golden Plover (m/s)	v	17.9							
Wingspan (m)		0.715							
Mean pitch of blade (degrees)		5							
Rotors per turbine		3							
Average rotational period (seconds)		6.12							
Turbine operational time (%)		85							
			Vantage	Point					
			1a	2	3	4a	5a	7a	8a
Survey time over 7 months (secs)	s		151200	151200	151200	151200	151200	151200	151200
Total flight-time between 25 - 175m (bird-secs)	РСН		0	0	0	20250	0	0	0
No. of turbines in viewshed	x		4	8	6	5	11	6	7
Survey area visible from VP (hectares)	Avp		436	395	282	303	599	422	451
	· ·								
Area of risk, i.e. 500m buffer of turbines within viewshed (hectares)	Arisk		187.57	332.16	218.8	171.3	457.9	268.27	330.28
Availability of species activity during survey period (hours)	Ва		2845	2845	2845	2845	2845	2845	2845
Stage 1 Calculations									
Measurements	Code	Calculation							
Proportion of flight-time between 25 - 175m	t1	PCH/s	0.0000	0.0000	0.0000	0.1339	0.0000	0.0000	0.0000
Flight activity per visible unit of area	F	t1/Avp	0	0	0	0.000442	0	0	0
Proportion of time in risk area	Trisk	F*Arisk	0	0	0	0.0757161	0	0	0
Bird occupancy of risk area	n	Trisk*Ba	0	0	0	215.41217		0	0
Risk volume	Vw	(Arisk*D)*10000	255095200	451737600	297568000		622744000	364847200	44918080
Actual volume of air swept by rotors	0	x*(Pi*r ² (d+l))	254088.8	508177.6	381133.2	317611	698744.2	381133.2	444655.4
Bird occupancy of rotor swept area (bird-secs)	b	3600*(n*(o/Vw))	0	0	0	1057.2362		0	0
Time taken for bird to pass through rotors (secs)	t2	(d+l)/v	0.244413408	-			0.2444134		-
Number of bird passes through the rotor during survey period	N	b/t2	0	0	0	4325.6062		0	0
Total transits adjusted for maximum operation of turbines (85%)	Tn	N*0.85	0	0	0	3676.7653		0	0
Number of transits per turbine within viewshed	TnT	Tn/x	0	0	0	735.35306		0	0
			0	0	0	733.33300	U	U	0
Average TnT of all VP's	ATnT	(TnT ₁ +TnT ₂ +TnT ₃ +)/8	91.91913191						
Number of transits across windfarm	Т	ATnT*(Total no. turbines)	1746.463506						
	1	Ann (lotar no. tarbines)	1740.403500						
		Collision Probability (Stage 2)	4.55%						
		Collisions during study period	T*Collision Probabilty	79.46409					
		Collisions during study period Collisions during study period with 98% Avoidance Rate		79.46409					

October 2020

Golden Plover, Winter VP Surveys: Sep 2017 - March 2	018								
Measurements	Code	Value							
Rotor radius (metres)	r	68							
Rotor diameter (metres)	D	136							
Max chord width of turbine blades (metres)	d	4.1							
Golden Plover length (metres)	I	0.275							
Average flight speed of Golden Plover (m/s)	v	17.9							
Wingspan (m)		0.715							
Mean pitch of blade (degrees)		5							
Rotors per turbine		3							
Average rotational period (seconds)		6.12							
Turbine operational time (%)		85							
			Mantas	e Point					
				2	3	4a	5a	7a	8a
Survey time over 7 months (secs)	s		151200	151200	151200	151200	151200	151200	151200
Total flight-time between 25 - 175m (bird-secs)	PCH		0	0	0	0	0	0	0
No. of turbines in viewshed	x		4	8	6	5	11	6	7
Survey area visible from VP (hectares)	Avp		436	395	282	303	599	422	451
				000	202				101
Area of risk, i.e. 500m buffer of turbines within viewshed (hectares)	Arisk		187.57	332.16	218.8	171.3	457.9	268.27	330.28
Availability of species activity during survey period (hours)	Ва		2845	2845	2845	2845	2845	2845	2845
			2010	2010	2010	2010	2010	2010	2010
Stage 1 Calculations									
Measurements	Code	Calculation	1						
Proportion of flight-time between 25 - 175m	t1	PCH/s	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Flight activity per visible unit of area	F	t1/Avp	0	0	0	0	0	0	0
Proportion of time in risk area	Trisk	F*Arisk	0	0	0	0	0	0	0
Bird occupancy of risk area	n	Trisk*Ba	0	0	0	0	0	0	0
Risk volume	Vw	(Arisk*D)*10000	255095200	451737600	297568000	232968000	622744000	364847200	449180800
Actual volume of air swept by rotors	0	x*(Pi*r ² (d+l))	254088.8	508177.6	381133.2	317611	698744.2	381133.2	444655.4
Bird occupancy of rotor swept area (bird-secs)	b	3600*(n*(o/Vw))	0	0	0	0	0	0	0
Time taken for bird to pass through rotors (secs)	t2	(d+l)/v	0.244413408	0.244413408	0.244413408		0.244413408	1	-
Number of bird passes through the rotor during survey period	N	b/t2	0	0	0	0	0	0	0
Total transits adjusted for maximum operation of turbines (85%)	Tn	N*0.85	0	0	0	0	0	0	0
Number of transits per turbine within viewshed	TnT	Tn/x	0	0	0	0	0	0	0
					-	-	-	-	-
Average TnT of all VP's	ATnT	(TnT ₁ +TnT ₂ +TnT ₃ +)/8	0						
	Т	ATnT*(Total no. turbines)	0						
Number of transits across windfarm	1	finite (rotar no. tar bines)							
Number of transits across windfarm									
Number of transits across windfarm		Collision Probability (Stage 2)	4.55%						
Number of transits across windfarm				s C					
		Collision Probability (Stage 2)	4.55% T*Collision						

Hen Harrier, Winter VP Surveys: Sep 2016 - Feb 2017	1								
Measurements	Code	Value	1						
Rotor radius (metres)	r	68							
Rotor diameter (metres)	D	136							
Max chord width of turbine blades (metres)	d	4.1							
Hen Harrier length (metres)	1	0.48							
Average flight speed of Hen Harrier (m/s)	v	12							
Wingspan (m)		1.1							
Mean pitch of blade (degrees)		5							
Rotors per turbine		3							
Rotational period (seconds)		6.12							
Turbine operational time (%)		85							
			Vantae	ge Point					
			1a	2	3	4a	5a	7a	8a
Survey time over 6 months (secs)	s		129600	129600	129600	129600	129600	129600	129600
Total flight-time between 25 - 175m (bird-secs)	РСН		0	0	0	0	0	78	0
No. of turbines in viewshed	x		4	8	6	5	11	6	7
Survey area visible from VP (hectares)	Avp		436	395	282	303	599	422	451
Area of risk, i.e. 500m buffer of turbines within viewshed									
(hectares)	Arisk		187.57	332.16	218.8	171.3	457.9	268.27	330.28
Availability of species activity during survey period (hours)	Ва		2090	2090	2090	2090	2090	2090	2090
, , , , , , , , , , , , , , , , , , , ,									
Stage 1 Calculations									
Measurements	Code	Calculation	1						
Proportion of flight-time between 25 - 175m	t1	PCH/s	0.0000	0.0000	0.0000	0.0000	0.0000	0.0006	0.0000
Flight activity per visible unit of area	F	t1/Avp	0	0	0	0	0	1.42619E-06	0
Proportion of time in risk area	Trisk	F*Arisk	0	0	0	0	0	0.000382604	0
Bird occupancy of risk area	n	Trisk*Ba	0	0	0	0	0	0.799641906	0
Risk volume	Vw	(Arisk*D)*10000	255095200	451737600	297568000	232968000	622744000	364847200	449180800
Actual volume of air swept by rotors	0	x*(Pi*r ² (d+l))	265994.6752	531989.35	398992.013	332493.344	731485.357	398992.0128	465490.682
Bird occupancy of rotor swept area (bird-secs)	b	3600*(n*(o/Vw))	0	0	0	0	0	3.148119653	0
Time taken for bird to pass through rotors (secs)	t2	(d+l)/v	0.381666667		0.38166667	0.38166667	0.38166667	0.381666667	0.38166667
Number of bird passes through the rotor during survey period	N	b/t2	0	0	0.38100007	0.38100007	0.38100007	8.248348436	0.38100007
Total transits adjusted for maximum operation of turbines (85%)		N*0.85	0	0	0	0	0	7.011096171	0
Number of transits per turbine within viewshed	TnT	Tn/x	0	0	0	0	0	1.168516028	0
Number of transits per turbine within viewsneu	1111		0	0	0	0	0	1.108510028	0
Average TnT of all VP's	ATnT	(TnT ₁ +TnT ₂ +TnT ₃ +)/8	0.146064504						
Number of transits across windfarm	Т	ATnT*(Total no. turbines)	2.775225568						
		Collision Probability (Stage 2)	5.709	%					
		Collisions during study period	T*Collision Probabilty	0.15818786					
		Collisions during study period with 99% Avoidance Rate	*0.01	0.00158188					
		Over 30-year duration of windfarm	*30	0.04745636					

Hen Harrier, Breeding VP Surveys: March 2017 - Aug	2017								
Measurements	Code	Value	1						
Rotor radius (metres)	r	68	_						
Rotor diameter (metres)	D	136							
Max chord width of turbine blades (metres)	d	4.1							
Hen Harrier length (metres)	L	0.48							
Average flight speed of Hen Harrier (m/s)	v	12							
Wingspan (m)		1.1							
Mean pitch of blade (degrees)		5							
Rotors per turbine		3							
Rotational period (seconds)		6.12							
Turbine operational time (%)		85							
			Vantage 1a	e Point 2	3	4a	5a	7a	8a
Survey time over 6 months (secs)	s		129600	129600	3 129600	4a 129600	129600	129600	129600
Total flight-time between 25 - 175m (bird-secs)	PCH		0	290	305	129600	0	265	0
No. of turbines in viewshed	х		4	8	6	5	11	6	7
Survey area visible from VP (hectares)	Avp		436	° 395	282	303	599	422	451
Area of risk, i.e. 500m buffer of turbines within viewshed	Avp		430	333	202	303	555	422	431
(hectares)	Arisk		187.57	332.16	218.8	171.3	457.9	268.27	330.28
Availability of species activity during survey period (hours)	Ba		3105	3105	3105	3105	3105	3105	3105
Availability of species activity during survey period (nodis)	Dd		3105	3103	5105	5105	5105	5105	5105
Stage 1 Calculations	1								
Measurements	Code	Calculation							
Proportion of flight-time between 25 - 175m	t1	PCH/s	0.0000	0.0022	0.0024	0.0015	0.0000	0.0020	0.0000
Flight activity per visible unit of area	F	t1/Avp	0	5.6649E-06	8.3454E-06	4.8384E-06	0	4.84539E-06	0
Proportion of time in risk area	Trisk	F*Arisk	0	0.00188167	0.00182597	0.00082883	0	0.001299872	0
Bird occupancy of risk area	n	Trisk*Ba	0	5.84258228	5.66962914	2.57350454	0	4.036102019	0
Risk volume	Vw	(Arisk*D)*10000	255095200	451737600	297568000	232968000	622744000	364847200	449180800
Actual volume of air swept by rotors	0	x*(Pi*r ² (d+l))	265994.6752	531989.35	398992.013	332493.344	731485.357	398992.0128	465490.68
Bird occupancy of rotor swept area (bird-secs)	b	3600*(n*(o/Vw))	0	24.7698876	27.3675001	13.2225167	0	15.88977766	0
Time taken for bird to pass through rotors (secs)	t2	(d+l)/v	0.381666667	0.38166667	0.38166667	0.38166667	0.38166667	0.381666667	0.3816666
Number of bird passes through the rotor during survey period	N	b/t2	0	64.8992689	71.7052404		0	41.63260521	0
Total transits adjusted for maximum operation of turbines (85%)		N*0.85	0	55.1643785	60.9494544	29.4475262		35.38771443	0
Number of transits per turbine within viewshed	TnT	Tn/x	0		10.1582424	5.88950525		5.897952405	0
Average TnT of all VP's	ATnT	$(TnT_1+TnT_2+TnT_3+)/8$	3.60515592						
Number of transits across windfarm	Т	ATnT*(Total no. turbines)	68.49796249						
		Collision Probability (Stage 2)	5.70%						
		Collisions during study period	T*Collision Probability	3.90438386					
		Collisions during study period with							
		99% Avoidance Rate	*0.01	0.03904384					
		Over 30-year duration of windfarm	*30	<u>1.17131516</u>					

Hen Harrier, Breeding VP Surveys: March 2018 - Aug	2018								
Measurements	Code	Value	1						
Rotor radius (metres)	r	68							
Rotor diameter (metres)	D	136							
Max chord width of turbine blades (metres)	d	4.1							
Hen Harrier length (metres)	1	0.48							
Average flight speed of Hen Harrier (m/s)	v	12							
Wingspan (m)		1.1							
Mean pitch of blade (degrees)		5							
Rotors per turbine		3							
Rotational period (seconds)		6.12							
Turbine operational time (%)		85							
			Vantag	e Point					
			1a	2	3	4a	5a	7a	8a
Survey time over 6 months (secs)	s		129600	129600	129600	129600	129600	129600	129600
Total flight-time between 25 - 175m (bird-secs)	РСН		0	461	70	110	748	934	90
No. of turbines in viewshed	x		4	8	6	5	11	6	7
Survey area visible from VP (hectares)	Avp		436	395	282	303	599	422	451
Area of risk, i.e. 500m buffer of turbines within viewshed	r.								
(hectares)	Arisk		187.57	332.16	218.8	171.3	457.9	268.27	330.28
Availability of species activity during survey period (hours)	Ва		3105	3105	3105	3105	3105	3105	3105
Stage 1 Calculations									
Measurements	Code	Calculation	1						
Proportion of flight-time between 25 - 175m	t1	PCH/s	0.0000	0.0036	0.0005	0.0008	0.0058	0.0072	0.0007
Flight activity per visible unit of area	F	t1/Avp	0		1.9153E-06	2.8012E-06	9.6354E-06	1.70777E-05	1.5398E-06
Proportion of time in risk area	Trisk	F*Arisk	0		0.00041907	0.00047985	0.00441205	0.004581435	0.00050856
Bird occupancy of risk area	n	Trisk*Ba	0		1.30122636		13.699415	14.2253558	1.57908259
Risk volume	Vw	(Arisk*D)*10000	255095200		297568000	232968000	622744000	364847200	449180800
Actual volume of air swept by rotors	0	x*(Pi*r ² (d+I))	265994.6752	531989.35	398992.013	332493.344	731485.357	398992.0128	465490.682
Bird occupancy of rotor swept area (bird-secs)	b	3600*(n*(o/Vw))	0	39.37558	6.2810656	7.65514124	57.9296104	56.00397106	5.8911103
Time taken for bird to pass through rotors (secs)	t2	(d+l)/v	0.381666667		0.38166667	0.38166667	0.38166667	0.381666667	0.38166667
Number of bird passes through the rotor during survey period	N	b/t2	0.581000007		16.4569404	20.0571386		146.7352954	15.4352235
Total transits adjusted for maximum operation of turbines (85%)		N*0.85	0		13.9883994	17.0485678	129.013543	124.7250011	13.11994
Number of transits per turbine within viewshed	TnT	Tn/x	0		2.33139989	3.40971356		20.78750018	1.87427714
	1111	111/X	0	10.9013423	2.55159969	5.40971550	11.7285059	20.78750018	1.0/42//14
	ATnT	(TnT ₁ +TnT ₂ +TnT ₃ +)/8	6 20661714						
Average TnT of all VP's	т		6.38661714						
Number of transits across windfarm	1	ATnT*(Total no. turbines)	121.3457257						
		Collision Probability (Stage 2)	5.70%	5					
			5.70%						
		Collisions during study period	T*Collision Probability	6.91670636					
		Collisions during study period with 99% Avoidance Rate	*0.01	0.06916706					
		Over 30-year duration of windfarm	*30	2.07501191					

Kestrel, Winter VP Surveys: Sep 2016 - March 2017									
Measurements	Code	Value	T						
Rotor radius (metres)	r	68							
Rotor diameter (metres)	D	136							
Max chord width of turbine blades (metres)	d	4.1							
Kestrel length (metres)	I	0.34							
Average flight speed of Kestrel (m/s)	v	10.1							
Wingspan (m)		0.76							
Mean pitch of blade (degrees)		5							
Rotors per turbine		3							
Rotational period (seconds)		6.12							
Turbine operational time (%)		85							
			Vantag	e Point					
			1a	2	3	4a	5a	7a	8a
Survey time over 7 months (secs)	S		151200	151200	151200	151200	151200	151200	151200
Total flight-time between 25 - 175m (bird-secs)	PCH		214	409	206	27	0	693	151
No. of turbines in viewshed	x		4	8	6	5	11	6	7
Survey area visible from VP (hectares)	Avp		436	395	282	303	599	422	451
Area of risk, i.e. 500m buffer of turbines within viewshed									
(hectares)	Arisk		187.57	332.16	218.8	171.3	457.9	268.27	330.28
Availability of species activity during survey period (hours)	Ва		2523	2523	2523	2523	2523	2523	2523
Stage 1 Calculations									
Measurements	Code	Calculation							
Proportion of flight-time between 25 - 175m	t1	PCH/s	0.0014	0.0027	0.0014	0.0002	0.0000	0.0046	0.0010
Flight activity per visible unit of area	F	t1/Avp	3.2462E-06	6.8482E-06	4.8313E-06	5.8934E-07	0	1.0861E-05	2.2144E-06
Proportion of time in risk area	Trisk	F*Arisk	0.00060889	0.00227469	0.00105709	0.00010095	0	0.002913675	0.00073136
Bird occupancy of risk area	n	Trisk*Ba	1.536229575	5.73903672	2.66704835	0.2547088	0	7.351201925	1.84521995
Risk volume	Vw	(Arisk*D)*10000	255095200	451737600	297568000	232968000	622744000	364847200	449180800
Actual volume of air swept by rotors	0	x*(Pi*r ² (d+l))	257863.8336	515727.667	386795.75	322329.792	709125.542	386795.7504	451261.709
Bird occupancy of rotor swept area (bird-secs)	b	3600*(n*(o/Vw))	5.590450041		12.4804101	1.26867574		28.05637317	6.67356571
Time taken for bird to pass through rotors (secs)	t2	(d+l)/v	0.43960396	0.43960396	0.43960396	0.43960396	0.43960396	0.43960396	0.43960396
Number of bird passes through the rotor during survey period	N	b/t2	12.71701473	53.6554817	28.3901222	2.88595157	0	63.82192996	15.1808589
Total transits adjusted for maximum operation of turbines (85%)		N*0.85	10.80946252		24.1316038	2.45305884		54.24864047	12.9037301
Number of transits per turbine within viewshed	TnT	Tn/x	2.702365631	5.70089493	4.02193397	0.49061177	0	9.041440078	1.84339001
·									
Average TnT of all VP's	ATnT	(TnT ₁ +TnT ₂ +TnT ₃ +)/8	2.97507955						
Number of transits across windfarm	Т	ATnT*(Total no. turbines)	56.52651144						
			50152051111						
		Collision Probability (Stage 2)	5.35%	6					
		Collisions during study period	T*Collision Probability	3.02416836					
		Collisions during study period with 95% Avoidance Rate	*0.05	0.15120842					
		Over 30-year duration of windfarm	*30	4.53625254					

Kestrel, Breeding VP Surveys: April 2017 - Aug 2017									
Measurements	Code	Value	1						
Rotor radius (metres)	r	68							
Rotor diameter (metres)	D	136							
Max chord width of turbine blades (metres)	d	4.1							
Kestrel length (metres)	1	0.34							
Average flight speed of Kestrel (m/s)	v	10.1							
Wingspan (m)		0.76							
Mean pitch of blade (degrees)		5							
Rotors per turbine		3							
Rotational period (seconds)		6.12							
Turbine operational time (%)		85							
			Vantag	e Point					
			1a	2	3	4a	5a	7a	8a
Survey time over 5 months (secs)	S		108000	108000	108000	108000	108000	108000	108000
Total flight-time between 25 - 175m (bird-secs)	PCH		0	0	0	0	180	310	535
No. of turbines in viewshed	x		4	8	6	5	11	6	7
Survey area visible from VP (hectares)	Avp		436	395	282	303	599	422	451
Area of risk, i.e. 500m buffer of turbines within viewshed									
(hectares)	Arisk		187.57	332.16	218.8	171.3	457.9	268.27	330.28
Availability of species activity during survey period (hours)	Ва		2692	2692	2692	2692	2692	2692	2692
Stage 1 Calculations	ú	П	-						
Measurements	Code	Calculation							
		calculation	4						
Proportion of flight-time between 25 - 175m	t1	PCH/s	0.0000	0.0000	0.0000	0.0000	0.0017	0.0029	0.0050
Proportion of flight-time between 25 - 175m Flight activity per visible unit of area	t1 F	PCH/s t1/Avp	0	0	0	0	2.7824E-06	6.80183E-06	1.0984E-05
Proportion of flight-time between 25 - 175m Flight activity per visible unit of area Proportion of time in risk area	t1	PCH/s t1/Avp F*Arisk	0 0	0 0	0 0	0 0	2.7824E-06 0.00127407	6.80183E-06 0.001824726	1.0984E-05 0.00362774
Proportion of flight-time between 25 - 175m Flight activity per visible unit of area Proportion of time in risk area Bird occupancy of risk area	t1 F Trisk n	PCH/s t1/Avp F*Arisk Trisk*Ba	0 0 0	0 0 0	0 0 0	0 0 0	2.7824E-06 0.00127407 3.42979076	6.80183E-06 0.001824726 4.912161673	1.0984E-05 0.00362774 9.76586724
Proportion of flight-time between 25 - 175m Flight activity per visible unit of area Proportion of time in risk area	t1 F Trisk	PCH/s t1/Avp F*Arisk	0 0	0 0	0 0	0 0	2.7824E-06 0.00127407	6.80183E-06 0.001824726	1.0984E-05 0.00362774
Proportion of flight-time between 25 - 175m Flight activity per visible unit of area Proportion of time in risk area Bird occupancy of risk area	t1 F Trisk n	PCH/s t1/Avp F*Arisk Trisk*Ba	0 0 0	0 0 0	0 0 0	0 0 0	2.7824E-06 0.00127407 3.42979076	6.80183E-06 0.001824726 4.912161673	1.0984E-05 0.00362774 9.76586724
Proportion of flight-time between 25 - 175m Flight activity per visible unit of area Proportion of time in risk area Bird occupancy of risk area Risk volume	t1 F Trisk N Vw	PCH/s t1/Avp F*Arisk Trisk*Ba (Arisk*D)*10000	0 0 0 255095200	0 0 0 451737600	0 0 0 297568000	0 0 0 232968000	2.7824E-06 0.00127407 3.42979076 622744000	6.80183E-06 0.001824726 4.912161673 364847200	1.0984E-05 0.00362774 9.76586724 449180800
Proportion of flight-time between 25 - 175m Flight activity per visible unit of area Proportion of time in risk area Bird occupancy of risk area Risk volume Actual volume of air swept by rotors	t1 F Trisk n Vw o	PCH/s t1/Avp F*Arisk Trisk*Ba (Arisk*D)*10000 x*(Pi*r ² (d+1))	0 0 0 255095200 257863.8336	0 0 0 451737600 515727.667 0	0 0 0 297568000 386795.75	0 0 0 232968000 322329.792	2.7824E-06 0.00127407 3.42979076 622744000 709125.542	6.80183E-06 0.001824726 4.912161673 364847200 386795.7504	1.0984E-05 0.00362774 9.76586724 449180800 451261.709
Proportion of flight-time between 25 - 175m Flight activity per visible unit of area Proportion of time in risk area Bird occupancy of risk area Risk volume Actual volume of air swept by rotors Bird occupancy of rotor swept area (bird-secs)	t1 F Trisk n Vw o b	PCH/s t1/Avp F*Arisk Trisk*Ba (Arisk*D)*10000 x*(Pi*r ² (d+1)) 3600*(n*(o/Vw))	0 0 255095200 257863.8336 0	0 0 0 451737600 515727.667 0	0 0 297568000 386795.75 0	0 0 232968000 322329.792 0	2.7824E-06 0.00127407 3.42979076 622744000 709125.542 14.0599477	6.80183E-06 0.001824726 4.912161673 364847200 386795.7504 18.7476065	1.0984E-05 0.00362774 9.76586724 449180800 451261.709 35.3199936
Proportion of flight-time between 25 - 175m Flight activity per visible unit of area Proportion of time in risk area Bird occupancy of risk area Risk volume Actual volume of air swept by rotors Bird occupancy of rotor swept area (bird-secs) Time taken for bird to pass through rotors (secs) Number of bird passes through the rotor during survey period Total transits adjusted for maximum operation of turbines (85%)	t1 F Trisk n Vw o b t2 N	PCH/s t1/Avp F*Arisk Trisk*Ba (Arisk*D)*10000 x*(Pi*r ² (d+1)) 3600*(n*(o/Vw)) (d+1)/v	0 0 255095200 257863.8336 0 0.43960396	0 0 451737600 515727.667 0 0.43960396	0 0 297568000 386795.75 0 0.43960396	0 0 232968000 322329.792 0 0.43960396	2.7824E-06 0.00127407 3.42979076 622744000 709125.542 14.0599477 0.43960396	6.80183E-06 0.001824726 4.912161673 364847200 386795.7504 18.7476065 0.43960396	1.0984E-05 0.00362774 9.76586724 449180800 451261.709 35.3199936 0.43960396
Proportion of flight-time between 25 - 175m Flight activity per visible unit of area Proportion of time in risk area Bird occupancy of risk area Risk volume Actual volume of air swept by rotors Bird occupancy of rotor swept area (bird-secs) Time taken for bird to pass through rotors (secs) Number of bird passes through the rotor during survey period	t1 F Trisk n Vw o b t2 N	PCH/s t1/Avp F*Arisk Trisk*Ba (Arisk*D)*10000 x*(Pi*r ² (d+1)) 3600*(n*(o/Vw)) (d+1)/v b/t2	0 0 255095200 257863.8336 0 0.43960396 0	0 0 451737600 515727.667 0 0.43960396 0	0 0 297568000 386795.75 0 0.43960396 0	0 0 232968000 322329.792 0 0.43960396 0	2.7824E-06 0.00127407 3.42979076 622744000 709125.542 14.0599477 0.43960396 31.9832143	6.80183E-06 0.001824726 4.912161673 364847200 386795.7504 18.7476065 0.43960396 42.64658235	1.0984E-05 0.00362774 9.76586724 449180800 451261.709 35.3199936 0.43960396 80.3450305
Proportion of flight-time between 25 - 175m Flight activity per visible unit of area Proportion of time in risk area Bird occupancy of risk area Risk volume Actual volume of air swept by rotors Bird occupancy of rotor swept area (bird-secs) Time taken for bird to pass through rotors (secs) Number of bird passes through the rotor during survey period Total transits adjusted for maximum operation of turbines (85%)	t1 F Trisk n Vw o b t2 N Tn	PCH/s t1/Avp F*Arisk Trisk*Ba (Arisk*D)*10000 x*(Pi*r ² (d+1)) 3600*(n*(o/Vw)) (d+1)/v b/t2 N*0.85	0 0 255095200 257863.8336 0 0.43960396 0 0	0 0 451737600 515727.667 0 0.43960396 0 0	0 0 297568000 386795.75 0 0.43960396 0 0	0 0 232968000 322329.792 0 0.43960396 0 0	2.7824E-06 0.00127407 3.42979076 622744000 709125.542 14.0599477 0.43960396 31.9832143 27.1857321	6.80183E-06 0.001824726 4.912161673 364847200 386795.7504 18.7476065 0.43960396 42.64658235 36.24959499	1.0984E-05 0.00362774 9.76586724 449180800 451261.709 35.3199936 0.43960396 80.3450305 68.2932759
Proportion of flight-time between 25 - 175m Flight activity per visible unit of area Proportion of time in risk area Bird occupancy of risk area Risk volume Actual volume of air swept by rotors Bird occupancy of rotor swept area (bird-secs) Time taken for bird to pass through rotors (secs) Number of bird passes through the rotor during survey period Total transits adjusted for maximum operation of turbines (85%)	t1 F Trisk n Vw o b t2 N Tn	PCH/s t1/Avp F*Arisk Trisk*Ba (Arisk*D)*10000 x*(Pi*r ² (d+1)) 3600*(n*(o/Vw)) (d+1)/v b/t2 N*0.85	0 0 255095200 257863.8336 0 0.43960396 0 0	0 0 451737600 515727.667 0 0.43960396 0 0	0 0 297568000 386795.75 0 0.43960396 0 0	0 0 232968000 322329.792 0 0.43960396 0 0	2.7824E-06 0.00127407 3.42979076 622744000 709125.542 14.0599477 0.43960396 31.9832143 27.1857321	6.80183E-06 0.001824726 4.912161673 364847200 386795.7504 18.7476065 0.43960396 42.64658235 36.24959499	1.0984E-05 0.00362774 9.76586724 449180800 451261.709 35.3199936 0.43960396 80.3450305 68.2932759
Proportion of flight-time between 25 - 175m Flight activity per visible unit of area Proportion of time in risk area Bird occupancy of risk area Risk volume Actual volume of air swept by rotors Bird occupancy of rotor swept area (bird-secs) Time taken for bird to pass through rotors (secs) Number of bird passes through the rotor during survey period Total transits adjusted for maximum operation of turbines (85%) Number of transits per turbine within viewshed	t1 F Trisk n Vw o b t2 N Tn Tn Tn TnT	PCH/s t1/Avp F*Arisk Trisk*Ba (Arisk*D)*10000 x*(Pi*r ² (d+l)) 3600*(n*(o/Vw)) (d+l)/v b/t2 N*0.85 Tn/x	0 0 255095200 257863.8336 0 0.43960396 0 0 0 0	0 0 451737600 515727.667 0 0.43960396 0 0	0 0 297568000 386795.75 0 0.43960396 0 0	0 0 232968000 322329.792 0 0.43960396 0 0	2.7824E-06 0.00127407 3.42979076 622744000 709125.542 14.0599477 0.43960396 31.9832143 27.1857321	6.80183E-06 0.001824726 4.912161673 364847200 386795.7504 18.7476065 0.43960396 42.64658235 36.24959499	1.0984E-05 0.00362774 9.76586724 449180800 451261.709 35.3199936 0.43960396 80.3450305 68.2932759
Proportion of flight-time between 25 - 175m Flight activity per visible unit of area Proportion of time in risk area Bird occupancy of risk area Risk volume Actual volume of air swept by rotors Bird occupancy of rotor swept area (bird-secs) Time taken for bird to pass through rotors (secs) Number of bird passes through the rotor during survey period Total transits adjusted for maximum operation of turbines (85%) Number of transits per turbine within viewshed Average TnT of all VP's	t1 F Trisk n Vw o b t2 N Tn Tn Tn TnT ATnT	PCH/s t1/Avp F*Arisk Trisk*Ba (Arisk*D)*10000 x*(Pi*r ² (d+l)) 3600*(n*(o/Vw)) (d+l)/v b/t2 N*0.85 Tn/x (TnT ₁ +TnT ₂ +TnT ₃ +)/8	0 0 255095200 257863.8336 0 0.43960396 0 0 0 0 0 2.283651454	0 0 451737600 515727.667 0 0.43960396 0 0	0 0 297568000 386795.75 0 0.43960396 0 0	0 0 232968000 322329.792 0 0.43960396 0 0	2.7824E-06 0.00127407 3.42979076 622744000 709125.542 14.0599477 0.43960396 31.9832143 27.1857321	6.80183E-06 0.001824726 4.912161673 364847200 386795.7504 18.7476065 0.43960396 42.64658235 36.24959499	1.0984E-05 0.00362774 9.76586724 449180800 451261.709 35.3199936 0.43960396 80.3450305 68.2932759
Proportion of flight-time between 25 - 175m Flight activity per visible unit of area Proportion of time in risk area Bird occupancy of risk area Risk volume Actual volume of air swept by rotors Bird occupancy of rotor swept area (bird-secs) Time taken for bird to pass through rotors (secs) Number of bird passes through the rotor during survey period Total transits adjusted for maximum operation of turbines (85%) Number of transits per turbine within viewshed Average TnT of all VP's	t1 F Trisk n Vw o b t2 N Tn Tn Tn TnT ATnT	PCH/s t1/Avp F*Arisk Trisk*Ba (Arisk*D)*10000 x*(Pi*r ² (d+l)) 3600*(n*(o/Vw)) (d+l)/v b/t2 N*0.85 Tn/x (TnT ₁ +TnT ₂ +TnT ₃ +)/8	0 0 255095200 257863.8336 0 0.43960396 0 0 0 0 0 2.283651454	0 0 451737600 515727.667 0 0.43960396 0 0 0 0	0 0 297568000 386795.75 0 0.43960396 0 0	0 0 232968000 322329.792 0 0.43960396 0 0	2.7824E-06 0.00127407 3.42979076 622744000 709125.542 14.0599477 0.43960396 31.9832143 27.1857321	6.80183E-06 0.001824726 4.912161673 364847200 386795.7504 18.7476065 0.43960396 42.64658235 36.24959499	1.0984E-05 0.00362774 9.76586724 449180800 451261.709 35.3199936 0.43960396 80.3450305 68.2932759
Proportion of flight-time between 25 - 175m Flight activity per visible unit of area Proportion of time in risk area Bird occupancy of risk area Risk volume Actual volume of air swept by rotors Bird occupancy of rotor swept area (bird-secs) Time taken for bird to pass through rotors (secs) Number of bird passes through the rotor during survey period Total transits adjusted for maximum operation of turbines (85%) Number of transits per turbine within viewshed Average TnT of all VP's	t1 F Trisk n Vw o b t2 N Tn Tn Tn TnT ATnT	PCH/s t1/Avp F*Arisk Trisk*Ba (Arisk*D)*10000 x*(Pi*r ² (d+1)) 3600*(n*(o/Vw)) (d+1)/v b/t2 N*0.85 Tn/x (TnT ₁ +TnT ₂ +TnT ₃ +)/8 ATnT*(Total no. turbines)	0 0 255095200 257863.8336 0 0.43960396 0 0 0 0 0 2.283651454 43.38937763	0 0 451737600 515727.667 0 0.43960396 0 0 0 0	0 0 297568000 386795.75 0 0.43960396 0 0 0	0 0 232968000 322329.792 0 0.43960396 0 0	2.7824E-06 0.00127407 3.42979076 622744000 709125.542 14.0599477 0.43960396 31.9832143 27.1857321	6.80183E-06 0.001824726 4.912161673 364847200 386795.7504 18.7476065 0.43960396 42.64658235 36.24959499	1.0984E-05 0.00362774 9.76586724 449180800 451261.709 35.3199936 0.43960396 80.3450305 68.2932759
Proportion of flight-time between 25 - 175m Flight activity per visible unit of area Proportion of time in risk area Bird occupancy of risk area Risk volume Actual volume of air swept by rotors Bird occupancy of rotor swept area (bird-secs) Time taken for bird to pass through rotors (secs) Number of bird passes through the rotor during survey period Total transits adjusted for maximum operation of turbines (85%) Number of transits per turbine within viewshed Average TnT of all VP's	t1 F Trisk n Vw o b t2 N Tn Tn Tn TnT ATnT	PCH/s t1/Avp F*Arisk Trisk*Ba (Arisk*D)*10000 x*(Pi*r ² (d+l)) 3600*(n*(o/Vw)) (d+l)/v b/t2 N*0.85 Tn/x (TnT ₁ +TnT ₂ +TnT ₃ +)/8 ATnT*(Total no. turbines) Collision Probability (Stage 2)	0 0 255095200 257863.8336 0 0.43960396 0 0 0 0 2.283651454 43.38937763 5.35% T*Collision	0 0 451737600 515727.667 0 0.43960396 0 0 0 0 0 0	0 0 297568000 386795.75 0 0.43960396 0 0 0 0	0 0 232968000 322329.792 0 0.43960396 0 0	2.7824E-06 0.00127407 3.42979076 622744000 709125.542 14.0599477 0.43960396 31.9832143 27.1857321	6.80183E-06 0.001824726 4.912161673 364847200 386795.7504 18.7476065 0.43960396 42.64658235 36.24959499	1.0984E-05 0.00362774 9.76586724 449180800 451261.709 35.3199936 0.43960396 80.3450305 68.2932759

Kestrel, Winter VP Surveys: Sep 2017 - March 2018									
Measurements	Code	Value	1						
Rotor radius (metres)	r	68							
Rotor diameter (metres)	D	136							
Max chord width of turbine blades (metres)	d	4.1							
Kestrel length (metres)	1	0.34							
Average flight speed of Kestrel (m/s)	v	10.1							
Wingspan (m)		0.76							
Mean pitch of blade (degrees)		5							
Rotors per turbine		3							
Rotational period (seconds)		6.12							
Turbine operational time (%)		85							
			Martin	. Delat					
			la vantag	ge Point 2	3	4a	5a	7a	8a
Survey time over 7 months (secs)	s		151200	151200	151200	151200	151200	151200	151200
Total flight-time between 25 - 175m (bird-secs)	PCH		58	176	1920	20	2813	97	0
No. of turbines in viewshed	x		4	8	6	5	11	6	7
Survey area visible from VP (hectares)	Avp		436	395	282	303	599	422	451
Area of risk, i.e. 500m buffer of turbines within viewshed	ŀ								
(hectares)	Arisk		187.57	332.16	218.8	171.3	457.9	268.27	330.28
Availability of species activity during survey period (hours)	Ва		2523	2523	2523	2523	2523	2523	2523
Stage 1 Calculations									
Measurements	Code	Calculation							
Proportion of flight-time between 25 - 175m	t1	PCH/s	0.0004	0.0012	0.0127	0.0001	0.0186	0.0006	0.0000
Flight activity per visible unit of area	F	t1/Avp	8.79812E-07	2.94689E-06	4.50298E-05	4.36552E-07	3.10593E-05	1.52022E-06	0
Proportion of time in risk area	Trisk	F*Arisk	0.000165026	0.000978839	0.009852527	7.47813E-05	0.014222036	0.00040783	0
Bird occupancy of risk area	n	Trisk*Ba	0.416361287	2.469609934	24.85792638	0.188673189	35.88219588	1.028956114	0
Risk volume	Vw	(Arisk*D)*10000	255095200	451737600	297568000	232968000	622744000	364847200	449180800
Actual volume of air swept by rotors	0	x*(Pi*r ² (d+l))	257863.8336	515727.6672	386795.7504	322329.792	709125.5424	386795.7504	451261.708
Bird occupancy of rotor swept area (bird-secs)	b	3600*(n*(o/Vw))	1.515168703		116.3222693	0.939759808	147.0940448	3.927082536	0
Time taken for bird to pass through rotors (secs)	t2	(d+l)/v	0.43960396	0.43960396	0.43960396	0.43960396	0.43960396	0.43960396	0.43960396
Number of bird passes through the rotor during survey period	N	b/t2	3.446667544	23.08891145	264.6069639	2.137741905	334.6058226	8.933228292	0
Total transits adjusted for maximum operation of turbines (85%)	Tn	N*0.85	2.929667413	19.62557473	224.9159193	1.817080619	284.4149492	7.593244048	0
Number of transits per turbine within viewshed	TnT	Tn/x	0.732416853	2.453196842	37.48598656	0.363416124	25.85590447	1.265540675	0
Average TnT of all VP's	ATnT	(TnT ₁ +TnT ₂ +TnT ₃ +)/8	8.51955769						
Number of transits across windfarm	Т	ATnT*(Total no. turbines)	161.8715961						
		Collision Probability (Stage 2)	5.35%						
		Collisions during study period	T*Collision Probability	8.660130392					
		Collisions during study period with 95% Avoidance Rate	*0.05	0.43300652					
		Over 30-year duration of windfarm	*30	12.99019559					

Kestrel, Breeding VP Surveys: April 2018 - Aug 2018									
Measurements	Code	Value	1						
Rotor radius (metres)	r	68	-						
Rotor diameter (metres)	D	136							
Max chord width of turbine blades (metres)	d	4.1							
Kestrel length (metres)	1	0.34							
Average flight speed of Kestrel (m/s)	v	10.1							
Wingspan (m)		0.76							
Mean pitch of blade (degrees)		5							
Rotors per turbine		3							
Rotational period (seconds)		6.12							
Turbine operational time (%)		85							
			Vantag	ge Point					
			1a	2	3	4a	5a	7a	8a
Survey time over 5 months (secs)	s		108000	108000	108000	108000	108000	108000	108000
Total flight-time between 25 - 175m (bird-secs)	PCH		0	0	0	0	10	270	0
No. of turbines in viewshed	x		4	8	6	5	11	6	7
Survey area visible from VP (hectares)	Avp		436	395	282	303	599	422	451
Area of risk, i.e. 500m buffer of turbines within viewshed									
(hectares)	Arisk		187.57	332.16	218.8	171.3	457.9	268.27	330.28
Availability of species activity during survey period (hours)	Ba		2692	2692	2692	2692	2692	2692	2692
Stage 1 Calculations			-						
Measurements	Code	Calculation	_						
Proportion of flight-time between 25 - 175m	t1	PCH/s	0.0000	0.0000	0.0000	0.0000	0.0001	0.0025	0.0000
Flight activity per visible unit of area	F	t1/Avp	0	0	0	0	1.54579E-07	5.92417E-06	0
Proportion of time in risk area	Trisk	F*Arisk	0	0	0	0	7.07815E-05	0.001589277	0
Bird occupancy of risk area	n	Trisk*Ba	0	0	0	0	0.190543931	4.27833436	0
Risk volume	Vw	(Arisk*D)*10000	255095200	451737600	297568000	232968000	622744000	364847200	449180800
Actual volume of air swept by rotors	0	x*(Pi*r ² (d+l))	257863.8336	515727.6672			709125.5424	386795.7504	451261.7088
Bird occupancy of rotor swept area (bird-secs)	b	3600*(n*(o/Vw))	0	0	0	0	0.781108203	16.3285605	0
Time taken for bird to pass through rotors (secs)	t2	(d+l)/v	0.43960396			0.43960396	0.43960396	0.43960396	0.43960396
Number of bird passes through the rotor during survey period	N	b/t2	0	0	0	0	1.776845237	37.14379753	0
Total transits adjusted for maximum operation of turbines (85%)		N*0.85	0	0	0	0	1.510318452	31.5722279	0
Number of transits per turbine within viewshed	TnT	Tn/x	0	0	0	0	0.137301677	5.262037983	0
Average TnT of all VP's	ATnT	$(TnT_1+TnT_2+TnT_3+)/8$	0.674917458						
Number of transits across windfarm	Т	ATnT*(Total no. turbines)	12.82343169						
				-					
		Collision Probability (Stage 2)	5.35%	6					
		Collisions during study period	T*Collision Probability	0.686053596					
		Collisions during study period Collisions during study period with 95% Avoidance Rate		0.686053596					

Mallard, Breeding VP Surveys: April 2017 - Aug 2017	,								
Measurements	Code	Value	1						
Rotor radius (metres)	r	68	-						
Rotor diameter (metres)	D	136							
Max chord width of turbine blades (metres)	d	4.1							
Mallard length (metres)	u I	0.58							
Average flight speed of Mallard (m/s)	v	18.5							
	V								
Wingspan (m)		0.88 5							
Mean pitch of blade (degrees)		-							
Rotors per turbine		3							
Rotational period (seconds)		6.12							
Turbine operational time (%)		85							
			Vantage		L				
			1a	2	3	4a	5a	7a	8a
Survey time over 5 months (secs)	S		108000	108000	108000	108000	108000	108000	108000
Total flight-time between 25 - 175m (bird-secs)	РСН		0	0	30	0	60	0	0
No. of turbines in viewshed	x		4	8	6	5	11	6	7
Survey area visible from VP (hectares)	Avp		436	395	282	303	599	422	451
Area of risk, i.e. 500m buffer of turbines within viewshed									
(hectares)	Arisk		187.57	332.16	218.8	171.3	457.9	268.27	330.28
Availability of species activity during survey period (hours)	Ва		3031	3031	3031	3031	3031	3031	3031
Stage 1 Calculations									
Measurements	Code	Calculation	1						
Proportion of flight-time between 25 - 175m	t1	PCH/s	0.0000	0.0000	0.0003	0.0000	0.0006	0.0000	0.0000
Flight activity per visible unit of area	F	t1/Avp	0	0	9.85E-07	0		0	0
Proportion of time in risk area	Trisk	F*Arisk	0	0	0.0002155	0	0.0004247	0	0
Bird occupancy of risk area	n	Trisk*Ba	0	0	0.6532533		1.2872333		0
Risk volume	Vw	(Arisk*D)*10000	255095200	451737600			622744000		44918080
Actual volume of air swept by rotors	0	x*(Pi *r ² (d+l))	271802.4192					407703.6288	475654.23
Bird occupancy of rotor swept area (bird-secs)	b	3600*(n*(o/Vw))	0	0	3.2221258			0	0
Time taken for bird to pass through rotors (secs)	t2		0.252972973	0.252973	0.252973	0.252973		0.252972973	0.252973
	N	(d+l)/v b/t2	0.252972973	0.252975	12.737036		21.986803		0.252973
Number of bird passes through the rotor during survey period	IN	0/12	U	0	12.737030	U	21.980803	U	0
	Tn	N*0.85	0	0	10.02640	0	10 000700		0
Total transits adjusted for maximum operation of turbines (85%)		T (0	0	10.82648	0	18.688783		0
Number of transits per turbine within viewshed	TnT	Tn/x	0	0	1.8044134	0	1.6989802	0	0
Average TnT of all VP's	ATnT	(TnT ₁ +TnT ₂ +TnT ₃ +)/8	0.437924207						
	AIIII								
Number of transits across windfarm	T	ATnT*(Total no. turbines)	8.320559941						
Number of transits across windfarm		ATnT*(Total no. turbines)	8.320559941	2					
Number of transits across windfarm				6					
Number of transits across windfarm		ATnT*(Total no. turbines)	8.320559941	0.44515					
Number of transits across windfarm		ATnT*(Total no. turbines) Collision Probability (Stage 2)	8.320559941 5.35% T*Collision						
Number of transits across windfarm		ATnT*(Total no. turbines) Collision Probability (Stage 2) Collisions during study period	8.320559941 5.35% T*Collision						

Mallard, Breeding VP Surveys: April 2018 - Aug 2018									
Measurements	Code	Value	1						
Rotor radius (metres)	r	68							
Rotor diameter (metres)	D	136							
Max chord width of turbine blades (metres)	d	4.1							
Mallard length (metres)	1	0.58							
Average flight speed of Mallard (m/s)	v	18.5							
Wingspan (m)		0.88							
Mean pitch of blade (degrees)		5							
Rotors per turbine		3							
Rotational period (seconds)		6.12							
Turbine operational time (%)		85							
			Vantage	Point					
			1a	2	3	4a	5a	7a	8a
Survey time over 5 months (secs)	s		108000	108000	108000	108000	108000	108000	108000
Total flight-time between 25 - 175m (bird-secs)	PCH		0	0	23	0	0	130	108000
No. of turbines in viewshed	x		4	8	6	5	11	6	7
Survey area visible from VP (hectares)	Avp		436	395	282	303	599	422	, 451
Area of risk, i.e. 500m buffer of turbines within viewshed	Λνμ		450	555	202	505	555	722	431
(hectares)	Arisk		187.57	332.16	218.8	171.3	457.9	268.27	330.28
Availability of species activity during survey period (hours)	Ba		3031	3031	3031	3031	3031	3031	3031
Availability of species activity during survey period (nours)	Dd		5051	5051	3031	5051	3031	5051	3031
Stage 1 Calculations									
Measurements	Code	Calculation							
Proportion of flight-time between 25 - 175m	t1	PCH/s	0.0000	0.0000	0.0002	0.0000	0.0000	0.0012	0.0001
Flight activity per visible unit of area	F	t1/Avp	0	0	7.552E-07	0	0	2.85238E-06	2.053E-07
			0						
Proportion of time in risk area	Trisk	F*Arisk	0	0	0.0001652	0	0	0.000765208	6.781E-05
Proportion of time in risk area Bird occupancy of risk area	Trisk n			0 0	0.0001652 0.5008276			0.000765208 2.319344131	6.781E-05 0.2055265
•		F*Arisk	0	0	0.5008276		0 0	2.319344131	
Bird occupancy of risk area Risk volume	n Vw	F*Arisk Trisk*Ba (Arisk*D)*10000	0 0 255095200	0 451737600	0.5008276 297568000	0 232968000	0 0 622744000	2.319344131 364847200	0.2055265 449180800
Bird occupancy of risk area Risk volume Actual volume of air swept by rotors	n Vw o	F*Arisk Trisk*Ba (Arisk*D)*10000 x*(Pi*r ² (d+l))	0 0	0 451737600	0.5008276 297568000 407703.63	0 232968000 339753.02	0 0 622744000 747456.65	2.319344131 364847200 407703.6288	0.2055265 449180800 475654.23
Bird occupancy of risk area Risk volume Actual volume of air swept by rotors Bird occupancy of rotor swept area (bird-secs)	n Vw o b	F*Arisk Trisk*Ba (Arisk*D)*10000 x*(Pi*r ² (d+l)) 3600*(n*(o/Vw))	0 0 255095200 271802.4192 0	0 451737600 543604.84 0	0.5008276 297568000 407703.63 2.4702965	0 232968000 339753.02 0	0 0 622744000 747456.65 0	2.319344131 364847200 407703.6288 9.330421247	0.2055265 449180800 475654.23 0.7835029
Bird occupancy of risk area Risk volume Actual volume of air swept by rotors Bird occupancy of rotor swept area (bird-secs) Time taken for bird to pass through rotors (secs)	n Vw o b t2	F*Arisk Trisk*Ba (Arisk*D)*10000 x*(Pi*r ² (d+1)) 3600*(n*(o/Vw)) (d+1)/v	0 0 255095200 271802.4192 0 0.252972973	0 451737600 543604.84 0 0.252973	0.5008276 297568000 407703.63 2.4702965 0.252973	0 232968000 339753.02 0 0.252973	0 0 622744000 747456.65 0 0.252973	2.319344131 364847200 407703.6288 9.330421247 0.252972973	0.2055265 449180800 475654.23 0.7835029 0.252973
Bird occupancy of risk area Risk volume Actual volume of air swept by rotors Bird occupancy of rotor swept area (bird-secs)	n Vw o b t2 N	F*Arisk Trisk*Ba (Arisk*D)*10000 x*(Pi*r ² (d+1)) 3600*(n*(o/Vw)) (d+1)/v b/t2	0 0 255095200 271802.4192 0	0 451737600 543604.84 0	0.5008276 297568000 407703.63 2.4702965	0 232968000 339753.02 0 0.252973	0 0 622744000 747456.65 0	2.319344131 364847200 407703.6288 9.330421247	0.2055265 449180800 475654.23 0.7835029
Bird occupancy of risk area Risk volume Actual volume of air swept by rotors Bird occupancy of rotor swept area (bird-secs) Time taken for bird to pass through rotors (secs) Number of bird passes through the rotor during survey period	n Vw o b t2 N	F*Arisk Trisk*Ba (Arisk*D)*10000 x*(Pi*r ² (d+1)) 3600*(n*(o/Vw)) (d+1)/v	0 0 255095200 271802.4192 0 0.252972973 0	0 451737600 543604.84 0 0.252973 0	0.5008276 297568000 407703.63 2.4702965 0.252973 9.7650608	0 232968000 339753.02 0 0.252973 0	0 0 622744000 747456.65 0 0.252973 0	2.319344131 364847200 407703.6288 9.330421247 0.252972973 36.88307544	0.2055265 449180800 475654.23 0.7835029 0.252973 3.0971802
Bird occupancy of risk area Risk volume Actual volume of air swept by rotors Bird occupancy of rotor swept area (bird-secs) Time taken for bird to pass through rotors (secs) Number of bird passes through the rotor during survey period Total transits adjusted for maximum operation of turbines (85%)	n Vw o b t2 N Tn	F*Arisk Trisk*Ba (Arisk*D)*10000 x*(Pi*r ² (d+1)) 3600*(n*(o/Vw)) (d+1)/v b/t2 N*0.85	0 0 255095200 271802.4192 0 0.252972973 0	0 451737600 543604.84 0 0.252973 0 0	0.5008276 297568000 407703.63 2.4702965 0.252973 9.7650608 8.3003017	0 232968000 339753.02 0 0.252973 0 0	0 0 622744000 747456.65 0 0.252973 0 0	2.319344131 364847200 407703.6288 9.330421247 0.252972973 36.88307544 31.35061412	0.2055265 449180800 475654.23 0.7835029 0.252973 3.0971802 2.6326032
Bird occupancy of risk area Risk volume Actual volume of air swept by rotors Bird occupancy of rotor swept area (bird-secs) Time taken for bird to pass through rotors (secs) Number of bird passes through the rotor during survey period	n Vw o b t2 N	F*Arisk Trisk*Ba (Arisk*D)*10000 x*(Pi*r ² (d+1)) 3600*(n*(o/Vw)) (d+1)/v b/t2	0 0 255095200 271802.4192 0 0.252972973 0	0 451737600 543604.84 0 0.252973 0	0.5008276 297568000 407703.63 2.4702965 0.252973 9.7650608	0 232968000 339753.02 0 0.252973 0 0	0 0 622744000 747456.65 0 0.252973 0	2.319344131 364847200 407703.6288 9.330421247 0.252972973 36.88307544	0.2055265 449180800 475654.23 0.7835029 0.252973 3.0971802
Bird occupancy of risk area Risk volume Actual volume of air swept by rotors Bird occupancy of rotor swept area (bird-secs) Time taken for bird to pass through rotors (secs) Number of bird passes through the rotor during survey period Total transits adjusted for maximum operation of turbines (85%) Number of transits per turbine within viewshed	n Vw o b t2 N Tn Tn	F*Arisk Trisk*Ba (Arisk*D)*10000 x*(Pi*r ² (d+1)) 3600*(n*(o/Vw)) (d+1)/v b/t2 N*0.85 Tn/x	0 0 255095200 271802.4192 0 0.252972973 0 0 0	0 451737600 543604.84 0 0.252973 0 0	0.5008276 297568000 407703.63 2.4702965 0.252973 9.7650608 8.3003017	0 232968000 339753.02 0 0.252973 0 0	0 0 622744000 747456.65 0 0.252973 0 0	2.319344131 364847200 407703.6288 9.330421247 0.252972973 36.88307544 31.35061412	0.2055265 449180800 475654.23 0.7835029 0.252973 3.0971802 2.6326032
Bird occupancy of risk area Risk volume Actual volume of air swept by rotors Bird occupancy of rotor swept area (bird-secs) Time taken for bird to pass through rotors (secs) Number of bird passes through the rotor during survey period Total transits adjusted for maximum operation of turbines (85%) Number of transits per turbine within viewshed Average TnT of all VP's	n Vw o b t2 N Tn TnT	F*Arisk Trisk*Ba (Arisk*D)*10000 x*(Pi*r ² (d+1)) 3600*(n*(o/Vw)) (d+1)/v b/t2 N*0.85 Tn/x (TnT ₁ +TnT ₂ +TnT ₃ +)/8	0 0 255095200 271802.4192 0 0.252972973 0 0 0 0 0.873071517	0 451737600 543604.84 0 0.252973 0 0	0.5008276 297568000 407703.63 2.4702965 0.252973 9.7650608 8.3003017	0 232968000 339753.02 0 0.252973 0 0	0 0 622744000 747456.65 0 0.252973 0 0	2.319344131 364847200 407703.6288 9.330421247 0.252972973 36.88307544 31.35061412	0.2055265 449180800 475654.23 0.7835029 0.252973 3.0971802 2.6326032
Bird occupancy of risk area Risk volume Actual volume of air swept by rotors Bird occupancy of rotor swept area (bird-secs) Time taken for bird to pass through rotors (secs) Number of bird passes through the rotor during survey period Total transits adjusted for maximum operation of turbines (85%) Number of transits per turbine within viewshed	n Vw o b t2 N Tn Tn	F*Arisk Trisk*Ba (Arisk*D)*10000 x*(Pi*r ² (d+1)) 3600*(n*(o/Vw)) (d+1)/v b/t2 N*0.85 Tn/x	0 0 255095200 271802.4192 0 0.252972973 0 0 0	0 451737600 543604.84 0 0.252973 0 0	0.5008276 297568000 407703.63 2.4702965 0.252973 9.7650608 8.3003017	0 232968000 339753.02 0 0.252973 0 0	0 0 622744000 747456.65 0 0.252973 0 0	2.319344131 364847200 407703.6288 9.330421247 0.252972973 36.88307544 31.35061412	0.2055265 449180800 475654.23 0.7835029 0.252973 3.0971802 2.6326032
Bird occupancy of risk area Risk volume Actual volume of air swept by rotors Bird occupancy of rotor swept area (bird-secs) Time taken for bird to pass through rotors (secs) Number of bird passes through the rotor during survey period Total transits adjusted for maximum operation of turbines (85%) Number of transits per turbine within viewshed Average TnT of all VP's	n Vw o b t2 N Tn TnT	F*Arisk Trisk*Ba (Arisk*D)*10000 x*(Pi*r ² (d+1)) 3600*(n*(o/Vw)) (d+1)/v b/t2 N*0.85 Tn/x (TnT ₁ +TnT ₂ +TnT ₃ +)/8	0 0 255095200 271802.4192 0 0.252972973 0 0 0 0 0.873071517	0 451737600 543604.84 0 0.252973 0 0 0 0	0.5008276 297568000 407703.63 2.4702965 0.252973 9.7650608 8.3003017	0 232968000 339753.02 0 0.252973 0 0	0 0 622744000 747456.65 0 0.252973 0 0	2.319344131 364847200 407703.6288 9.330421247 0.252972973 36.88307544 31.35061412	0.2055265 449180800 475654.23 0.7835029 0.252973 3.0971802 2.6326032
Bird occupancy of risk area Risk volume Actual volume of air swept by rotors Bird occupancy of rotor swept area (bird-secs) Time taken for bird to pass through rotors (secs) Number of bird passes through the rotor during survey period Total transits adjusted for maximum operation of turbines (85%) Number of transits per turbine within viewshed Average TnT of all VP's	n Vw o b t2 N Tn TnT	F*Arisk Trisk*Ba (Arisk*D)*10000 x*(Pi*r ² (d+l)) 3600*(n*(o/Vw)) (d+l)/v b/t2 N*0.85 Tn/x (TnT ₁ +TnT ₂ +TnT ₃ +)/8 ATnT*(Total no. turbines)	0 0 255095200 271802.4192 0 0.252972973 0 0 0 0 0.873071517 16.58835883	0 451737600 543604.84 0 0.252973 0 0 0 0	0.5008276 297568000 407703.63 2.4702965 0.252973 9.7650608 8.3003017 1.3833836	0 232968000 339753.02 0 0.252973 0 0	0 0 622744000 747456.65 0 0.252973 0 0	2.319344131 364847200 407703.6288 9.330421247 0.252972973 36.88307544 31.35061412	0.2055265 449180800 475654.23 0.7835029 0.252973 3.0971802 2.6326032
Bird occupancy of risk area Risk volume Actual volume of air swept by rotors Bird occupancy of rotor swept area (bird-secs) Time taken for bird to pass through rotors (secs) Number of bird passes through the rotor during survey period Total transits adjusted for maximum operation of turbines (85%) Number of transits per turbine within viewshed Average TnT of all VP's	n Vw o b t2 N Tn TnT	F*Arisk Trisk*Ba (Arisk*D)*10000 x*(Pi*r ² (d+l)) 3600*(n*(o/Vw)) (d+l)/v b/t2 N*0.85 Tn/x (TnT ₁ +TnT ₂ +TnT ₃ +)/8 ATnT*(Total no. turbines) Collision Probability (Stage 2)	0 0 255095200 271802.4192 0 0.252972973 0 0 0 0 0 0 0.873071517 16.58835883 5.35% T*Collision	0 451737600 543604.84 0 0.252973 0 0 0 0	0.5008276 297568000 407703.63 2.4702965 0.252973 9.7650608 8.3003017 1.3833836	0 232968000 339753.02 0 0.252973 0 0	0 0 622744000 747456.65 0 0.252973 0 0	2.319344131 364847200 407703.6288 9.330421247 0.252972973 36.88307544 31.35061412	0.2055265 449180800 475654.23 0.7835029 0.252973 3.0971802 2.6326032
Bird occupancy of risk area Risk volume Actual volume of air swept by rotors Bird occupancy of rotor swept area (bird-secs) Time taken for bird to pass through rotors (secs) Number of bird passes through the rotor during survey period Total transits adjusted for maximum operation of turbines (85%) Number of transits per turbine within viewshed Average TnT of all VP's	n Vw o b t2 N Tn TnT	F*Arisk Trisk*Ba (Arisk*D)*10000 x*(Pi*r²(d+l)) 3600*(n*(o/Vw)) (d+l)/v b/t2 N*0.85 Tn/x (TnT1+TnT2+TnT3+)/8 ATnT*(Total no. turbines) Collision Probability (Stage 2) Collisions during study period	0 0 255095200 271802.4192 0 0.252972973 0 0 0 0 0 0 0.873071517 16.58835883 5.35% T*Collision	0 451737600 543604.84 0 0.252973 0 0 0 0	0.5008276 297568000 407703.63 2.4702965 0.252973 9.7650608 8.3003017 1.3833836	0 232968000 339753.02 0 0.252973 0 0	0 0 622744000 747456.65 0 0.252973 0 0	2.319344131 364847200 407703.6288 9.330421247 0.252972973 36.88307544 31.35061412	0.2055265 449180800 475654.23 0.7835029 0.252973 3.0971802 2.6326032

Peregrine, Winter VP Surveys: Sep 2017 - Feb 2018

relegime, white vr Suveys. Sep 2017 - Teb 2018									
Measurements	Code	Value							
Rotor radius (metres)	r	68							
Rotor diameter (metres)	D	136							
Max chord width of turbine blades (metres)	d	4.1							
Peregrine length (metres)	1	0.48							
Average flight speed of Peregrine (m/s)	v	12							
Wingspan (m)		1.02							
Mean pitch of blade (degrees)		5							
Rotors per turbine		3							
Rotational period (seconds)		6.12							
Turbine operational time (%)		85							
			Vantag	e Point					
			1a	2	3	4a	5a	7a	8a
Survey time over 6 months (secs)	s		129600	129600	129600	129600	129600	129600	129600
Total flight-time between 25 - 175m (bird-secs)	РСН		0	0	0	0	0	0	0
No. of turbines in viewshed	x		4	8	6	5	11	6	7
Survey area visible from VP (hectares)	Avp		436	395	282	303	599	422	451
Area of risk, i.e. 500m buffer of turbines within viewshed	7.00		100	000	202		555		
(hectares)	Arisk		187.57	332.16	218.8	171.3	457.9	268.27	330.28
Availability of species activity during survey period (hours)	Ba		2090	2090	2090	2090	2090	2090	2090
	50		2050	2050	2050	2050	2050	2050	2050
Stage 1 Calculations									
Measurements	Code	Calculation	1						
Proportion of flight-time between 25 - 175m	t1	PCH/s	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Flight activity per visible unit of area	F	t1/Avp	0	0	0	0	0	0	0
Proportion of time in risk area	Trisk	F*Arisk	0	0	0	0	0	0	0
Bird occupancy of risk area	n	Trisk*Ba	0	0	0	0	0	0	0
Risk volume	Vw	(Arisk*D)*10000	255095200	451737600	297568000	232968000	622744000	364847200	449180800
Actual volume of air swept by rotors	0	x*(Pi*r ² (d+l))	265994.6752	531989.35	398992.013	332493.344	731485.357	398992.0128	465490.682
Bird occupancy of rotor swept area (bird-secs)	b	3600*(n*(o/Vw))	0	0	0	0	0	0	0
Time taken for bird to pass through rotors (secs)	t2	(d+l)/v	0.381666667	0.38166667	0.38166667	0.38166667	0.38166667	0.381666667	0.38166667
Number of bird passes through the rotor during survey period	N	b/t2	0	0.38100007	0.38100007	0	0	0	0.38100007
Total transits adjusted for maximum operation of turbines (85%)		N*0.85	0	0	0	0	0	0	0
Total transits in a year	TnY	(Tn/No. months surveyed)*12	0	0	0	0	0	0	0
Number of transits per turbine within viewshed	TnT	Tn/x	0	0	0	0	0	0	0
Number of transits per turbine within viewshed	1111	111/ X	U	0	0	0	0	0	U
Average TnT of all VP's	ATnT	(TnT ₁ +TnT ₂ +TnT ₃ +)/8	0						
Number of transits across windfarm	т	ATnT*(Total no. turbines)	0						
			0						
		Collision Probability (Stage 2)	5.50%						
		Collisions during study period	T*Collision Probability	(D				
		Collisions during study period with	*0.02	(
		98% Avoidance Rate	*0.02	(J				

\sim	-	la a 14	2	020	
0	Cto	ber	Z	020	

Peregrine, Breeding VP Surveys: March 2018 - Aug 2	018								
Measurements	Code	Value							
Rotor radius (metres)	r	68							
Rotor diameter (metres)	D	136							
Max chord width of turbine blades (metres)	d	4.1							
Peregrine length (metres)	I	0.42							
Average flight speed of Peregrine (m/s)	v	12.1							
Wingspan (m)		1.02							
Mean pitch of blade (degrees)		5							
Rotors per turbine		3							
Rotational period (seconds)		6.12							
Turbine operational time (%)		85							
			Vantag	e Point					
			1a	2	3	4a	5a	7a	8a
Survey time over 6 months (secs)	s		129600	129600	129600	129600	129600	129600	129600
Total flight-time between 25 - 175m (bird-secs)	РСН		0	0	0	0	0	0	0
No. of turbines in viewshed	x		4	8	6	5	11	6	7
Survey area visible from VP (hectares)	Avp		436	395	282	303	599	422	451
Area of risk, i.e. 500m buffer of turbines within viewshed									
(hectares)	Arisk		187.57	332.16	218.8	171.3	457.9	268.27	330.28
Availability of species activity during survey period (hours)	Ва		3105	3105	3105	3105	3105	3105	3105
Stage 1 Calculations									
Measurements	Code	Calculation	1						
Proportion of flight-time between 25 - 175m	t1	PCH/s	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Flight activity per visible unit of area	F	t1/Avp	0	0	0	0	0	0	0
Proportion of time in risk area	Trisk	F*Arisk	0	0	0	0	0	0	0
Bird occupancy of risk area	n	Trisk*Ba	0	0	0	0	0	0	0
Risk volume	Vw	(Arisk*D)*10000	255095200	451737600	297568000	232968000	622744000	364847200	449180800
Actual volume of air swept by rotors	0	x*(Pi*r ² (d+l))	262510.0288	525020.058	393765.043	328137.536	721902.579	393765.0432	459392.55
Bird occupancy of rotor swept area (bird-secs)	b	3600*(n*(o/Vw))	0	0	0	0	0	0	0
Time taken for bird to pass through rotors (secs)	t2	(d+l)/v	0.373553719	0.37355372			0.37355372	0.373553719	0.37355372
Number of bird passes through the rotor during survey period	N	b/t2	0	0	0	0	0	0	0
name. of en a public through the rotor during survey period			Ŭ.	Ŭ				-	
Total transits adjusted for maximum operation of turbines (85%)	Tn	N*0.85	0	0	0	0	0	0	0
Total transits in a year	TnY	(Tn/No. months surveyed)*12	0	0	0	0	0	0	0
Number of transits per turbine within viewshed	TnT	Tn/x	0	0	0	0	0	0	0
Average TnT of all VP's	ATnT	(TnT ₁ +TnT ₂ +TnT ₃ +)/8	0						
Number of transits across windfarm	Т	ATnT*(Total no. turbines)	0						
	1		0						
		Collision Probability (Stage 2)	5.50%	5					
		Collisions during study period	T*Collision Probability	()				
		Collisions during study period with 98% Avoidance Rate	*0.02	()				
		Over 30-year duration of windfarm	*30)				

Sparrowhawk, Winter VP Surveys: Sep 2017 - March	1		-						
Measurements	Code	Value							
Rotor radius (metres)	r	68							
Rotor diameter (metres)	D	136							
Max chord width of turbine blades (metres)	d	4.1							
Sparrowhawk length (metres)	1	0.33							
Average flight speed of Sparrowhawk (m/s)	v	10							
Wingspan (m)		0.67							
Mean pitch of blade (degrees)		5							
Rotors per turbine		3							
Rotational period (seconds)		6.12							
Turbine operational time (%)		85							
			Vantage	e Point					
			1a	2	3	4a	5a	7a	8a
Survey time over 7 months (secs)	s		151200	151200	151200	151200	151200	151200	151200
Total flight-time between 25 - 175m (bird-secs)	РСН		20	0	100	0	0	0	0
No. of turbines in viewshed	x		4	8	6	5	11	6	7
Survey area visible from VP (hectares)	Avp		436	395	282	303	599	422	451
Area of risk, i.e. 500m buffer of turbines within viewshed			430	333	202	505	555	766	431
(hectares)	Arisk		187.57	332.16	218.8	171.3	457.9	268.27	330.28
Availability of species activity during survey period (hours)	Ba		2523	2523	2523	2523	2523	2523	2523
Availability of species activity during survey period (nodis)	Da		2323	2323	2323	2323	2323	2323	2323
Stage 1 Calculations									
Measurements	Code	Calculation	T						
	-			0.0000	0.0007	0.0000	0.0000	0.0000	0.0000
Proportion of flight-time between 25 - 175m	t1	PCH/s	0.0001	0.0000	0.0007	0.0000	0.0000	0.0000	0.0000
Flight activity per visible unit of area	F	t1/Avp	3.03383E-07	0	2.3453E-06	0	0	0	0
Proportion of time in risk area	Trisk	F*Arisk	5.69056E-05	0	0.00051315		0	0	0
Bird occupancy of risk area	n	Trisk*Ba	0.143572858	0	1.29468367		0	0	0
Risk volume	Vw	(Arisk*D)*10000	255095200	451737600	297568000	232968000	622744000	364847200	449180800
Actual volume of air swept by rotors	0	x*(Pi*r ² (d+l))	257283.0592	514566.118	385924.589	321603.824	707528.413	385924.5888	450245.354
Bird occupancy of rotor swept area (bird-secs)	b	3600*(n*(o/Vw))	0.521295228	0	6.04480636	0	0	0	0
Time taken for bird to pass through rotors (secs)	t2	(d+l)/v	0.443	0.443	0.443	0.443	0.443	0.443	0.443
Number of bird passes through the rotor during survey period	N	b/t2	1.176738663	0	13.6451611	0	0	0	0
	Ta	N*0.85							
Total transits adjusted for maximum operation of turbines (85%)) ^{Tn}	N°0.85	1.000227864	0	11.5983869	0	0	0	0
Number of transits per turbine within viewshed	TnT	Tn/x	0.250056966	0	1.93306449	0	0	0	0
Average TnT of all VP's	ATnT	(TnT ₁ +TnT ₂ +TnT ₃ +)/8	0.272890182						
Number of transits across windfarm	т	ATnT*(Total no. turbines)	5.184913454						
			512015120151						
		Collision Probability (Stage 2)	5.30%						
		Collisions during study period	T*Collision Probability	0.27480041					
					1				
		Collisions during study period with 98% Avoidance Rate	*0.02	0.00549601					

1 3 4.1 5 0.54 1.2 0	m	Calculatic r/R radius	c/C	•••	ollision) as	s a function	of radius		W Band	
3 4.1 5 0.54 1.2	m	r/R	c/C	•••	ollision) as	a function	of radius			
3 4.1 5 0.54 1.2	m	r/R	c/C	•••	ollision) as	a function	of radius			
4.1 5 0.54 1.2	m									
5 0.54 1.2	m					Upw ind:			Dow nw inc	d:
0.54 1.2		radius	abord	α	collide		contribution	collide		contribution
1.2			chord	alpha	length	p(collision)	from radius r	length	p(collision)	from radius r
		0.025	0.575	7.62	27.25	1.00	0.00125	26.84	0.99	0.00124
0	m	0.075	0.575	2.54	9.22	0.34	0.00255	8.81	0.32	0.00243
		0.125	0.702	1.52	6.45	0.24	0.00297	5.94	0.22	0.00274
		0.175	0.860	1.09	5.44	0.20	0.00351	4.82	0.18	0.00311
13.3	m/sec	0.225	0.994	0.85	4.81	0.18	0.00399	4.10	0.15	0.00340
136	m	0.275	0.947	0.69	3.85	0.14	0.00390	3.17	0.12	0.00321
6.12	sec	0.325	0.899	0.59	3.18	0.12	0.00381	2.53	0.09	0.00304
		0.375	0.851	0.51	2.68	0.10	0.00370	2.07	0.08	0.00286
		0.425	0.804	0.45	2.30	0.08	0.00360	1.72	0.06	0.00270
		0.475	0.756	0.40	2.05	0.08	0.00359	1.51	0.06	0.00264
0.45		0.525	0.708	0.36	1.84	0.07	0.00357	1.34	0.05	0.00259
		0.575	0.660	0.33	1.67	0.06	0.00354	1.20	0.04	0.00254
		0.625	0.613	0.30	1.52	0.06	0.00351	1.08	0.04	0.00250
		0.675	0.565	0.28	1.39	0.05	0.00347	0.99	0.04	0.00246
		0.725	0.517	0.26	1.28	0.05	0.00342	0.91	0.03	0.00243
		0.775	0.470	0.25	1.18	0.04	0.00337	0.84	0.03	0.00241
		0.825	0.422	0.23	1.09	0.04	0.00331	0.79	0.03	0.00239
		0.875	0.374	0.22	1.01	0.04	0.00325	0.74	0.03	0.00238
		0.925	0.327	0.21	0.93	0.03	0.00318	0.70	0.03	0.00238
		0.975	0.279	0.20	0.86	0.03	0.00310	0.66	0.02	0.00238
			Overall p(collision) =	Upwind	6.7%		Downwind	5.2%
	0.45	0.45 	0.45 0.525 0.575 0.625 0.675 0.675 0.725 0.725 0.75 0.825 0.875 0.925 0.925 0.975	0.45 0.525 0.708 0.575 0.660 0.575 0.613 0.625 0.613 0.675 0.565 0.725 0.517 0.775 0.470 0.825 0.422 0.825 0.324 0.925 0.327 0.925 0.279 0.937 0.279	0.45 0.525 0.708 0.36 0.575 0.660 0.33 0.625 0.613 0.30 0.625 0.613 0.30 0.625 0.613 0.30 0.625 0.613 0.30 0.625 0.613 0.30 0.675 0.565 0.28 0.775 0.470 0.25 0.875 0.472 0.23 0.875 0.374 0.22 0.925 0.327 0.21 0.975 0.279 0.20	0.45 0.525 0.708 0.36 1.84 0.575 0.660 0.33 1.67 0.625 0.613 0.30 1.52 0.625 0.613 0.30 1.52 0.625 0.655 0.28 1.39 0.625 0.517 0.26 1.28 0.775 0.470 0.25 1.18 0.825 0.422 0.23 1.09 0.825 0.374 0.22 1.01 0.925 0.327 0.21 0.93	0.45 0.525 0.708 0.36 1.84 0.07 0.575 0.660 0.33 1.67 0.06 0.625 0.613 0.30 1.52 0.06 0.625 0.613 0.30 1.52 0.06 0.625 0.565 0.28 1.39 0.05 0.755 0.517 0.26 1.28 0.05 0.755 0.470 0.25 1.18 0.04 0.755 0.470 0.25 1.18 0.04 0.825 0.422 0.23 1.09 0.04 0.875 0.374 0.22 1.01 0.04 0.925 0.327 0.21 0.93 0.03 0.975 0.279 0.20 0.86 0.03	0.45 0.525 0.708 0.36 1.84 0.07 0.00357 0.575 0.660 0.33 1.67 0.06 0.0354 0.625 0.613 0.30 1.52 0.06 0.0351 0.625 0.613 0.30 1.52 0.06 0.00351 0.625 0.615 0.28 1.39 0.05 0.00347 0.725 0.517 0.26 1.28 0.05 0.0337 0.775 0.470 0.25 1.18 0.04 0.00331 0.825 0.422 0.23 1.09 0.04 0.00331 0.825 0.374 0.22 1.01 0.04 0.00325 0.825 0.327 0.21 0.93 0.03 0.00318 0.925 0.327 0.21 0.93 0.03 0.00310 0.935 0.279 0.20 0.86 0.03 0.00310	0.45 0.525 0.708 0.36 1.84 0.07 0.00357 1.34 0.575 0.660 0.33 1.67 0.06 0.00354 1.20 0.625 0.613 0.30 1.52 0.06 0.00351 1.88 0.625 0.613 0.30 1.52 0.06 0.00351 1.88 0.625 0.675 0.565 0.28 1.39 0.05 0.00347 0.99 0.725 0.517 0.26 1.28 0.05 0.00342 0.91 0.775 0.470 0.25 1.18 0.04 0.00337 0.84 0.825 0.422 0.23 1.09 0.04 0.00331 0.79 0.875 0.374 0.22 1.01 0.04 0.00325 0.74 0.925 0.327 0.21 0.93 0.03 0.00318 0.70 0.935 0.279 0.20 0.86 0.03 0.00310 0.66 0.935 0.279 0.20 0.86 0.03 0.00310 0.66	0.45 0.525 0.708 0.36 1.84 0.07 0.00357 1.34 0.05 0 0.575 0.660 0.33 1.67 0.06 0.00354 1.20 0.04 0 0.625 0.613 0.30 1.52 0.06 0.00351 1.08 0.04 0 0.625 0.613 0.30 1.52 0.06 0.00351 1.08 0.04 0 0.675 0.565 0.28 1.39 0.05 0.00347 0.99 0.04 0 0.725 0.517 0.26 1.28 0.05 0.00342 0.91 0.03 0 0.775 0.470 0.25 1.18 0.04 0.00337 0.84 0.03 0 0.825 0.422 0.23 1.09 0.04 0.00331 0.79 0.03 0 0.875 0.374 0.22 1.01 0.04 0.00325 0.74 0.03 0 0.975 0.279 0.20 0.86 0.03 0.00310 0.66 0.02 0<